Representations On Hilbert Spaces
A representation of a Lie group G on a complex Hilbert space V is a group homomorphism Ψ:G → B(V) from G to B(V), the group of bounded linear operators of V which have a bounded inverse, such that the map G×V → V given by (g,v) → Ψ(g)v is continuous.
This definition can handle representations on infinite-dimensional Hilbert spaces. Such representations can be found in e.g. quantum mechanics, but also in Fourier analysis as shown in the following example.
Let G=R, and let the complex Hilbert space V be L2(R). We define the representation Ψ:R → B(L2(R)) by Ψ(r){f(x)} → f(r-1x).
See also Wigner's classification for representations of the Poincaré group.
Read more about this topic: Representation Of A Lie Group
Famous quotes containing the word spaces:
“We should read history as little critically as we consider the landscape, and be more interested by the atmospheric tints and various lights and shades which the intervening spaces create than by its groundwork and composition.”
—Henry David Thoreau (18171862)