Introduction
Relational algebra received little attention outside of pure mathematics until the publication of E.F. Codd's relational model of data in 1970. Codd proposed such an algebra as a basis for database query languages. (See section Implementations.)
Both a named and a unnamed perspective are possible for relational algebra, depending on whether the tuples are endowed with component names or not. In the unnamed perspective, a tuple is simply a member of a Cartesian product. In the named perspective, tuples are functions from a finite set U of attributes (of the relation) to a domain of values (assumed distinct from U). The relational algebras obtained from the two perspectives are equivalent. The typical undergraduate textbooks present only the named perspective though, and this article follows suit.
Relational algebra is essentially equivalent in expressive power to relational calculus (and thus first-order logic); this result is known as Codd's theorem. One must be careful to avoid a mismatch that may arise between the two languages because negation, applied to a formula of the calculus, constructs a formula that may be true on an infinite set of possible tuples, while the difference operator of relational algebra always returns a finite result. To overcome these difficulties, Codd restricted the operands of relational algebra to finite relations only and also proposed restricted support for negation (NOT) and disjunction (OR). Analogous restrictions are found in many other logic-based computer languages. Codd defined the term relational completeness to refer to a language that is complete with respect to first-order predicate calculus apart from the restrictions he proposed. In practice the restrictions have no adverse effect on the applicability of his relational algebra for database purposes.
Read more about this topic: Relational Algebra
Famous quotes containing the word introduction:
“My objection to Liberalism is thisthat it is the introduction into the practical business of life of the highest kindnamely, politicsof philosophical ideas instead of political principles.”
—Benjamin Disraeli (18041881)
“For the introduction of a new kind of music must be shunned as imperiling the whole state; since styles of music are never disturbed without affecting the most important political institutions.”
—Plato (c. 427347 B.C.)
“Such is oftenest the young mans introduction to the forest, and the most original part of himself. He goes thither at first as a hunter and fisher, until at last, if he has the seeds of a better life in him, he distinguishes his proper objects, as a poet or naturalist it may be, and leaves the gun and fish-pole behind. The mass of men are still and always young in this respect.”
—Henry David Thoreau (18171862)