More General Algebras
The regular representation of a group ring is such that the left-hand and right-hand regular representations give isomorphic modules (and we often need not distinguish the cases). Given an algebra over a field A, it doesn't immediately make sense to ask about the relation between A as left-module over itself, and as right-module. In the group case, the mapping on basis elements g of K defined by taking the inverse element gives an isomorphism of K to its opposite ring. For A general, such a structure is called a Frobenius algebra. As the name implies, these were introduced by Frobenius in the nineteenth century. They have been shown to be related to topological quantum field theory in 1 + 1 dimensions.
Read more about this topic: Regular Representation
Famous quotes containing the word general:
“Some people are under the impression that all that is required to make a good fisherman is the ability to tell lies easily and without blushing; but this is a mistake. Mere bald fabrication is useless; the veriest tyro can manage that. It is in the circumstantial detail, the embellishing touches of probability, the general air of scrupulousalmost of pedanticveracity, that the experienced angler is seen.”
—Jerome K. Jerome (18591927)