Regular Representation - More General Algebras

More General Algebras

The regular representation of a group ring is such that the left-hand and right-hand regular representations give isomorphic modules (and we often need not distinguish the cases). Given an algebra over a field A, it doesn't immediately make sense to ask about the relation between A as left-module over itself, and as right-module. In the group case, the mapping on basis elements g of K defined by taking the inverse element gives an isomorphism of K to its opposite ring. For A general, such a structure is called a Frobenius algebra. As the name implies, these were introduced by Frobenius in the nineteenth century. They have been shown to be related to topological quantum field theory in 1 + 1 dimensions.

Read more about this topic:  Regular Representation

Famous quotes containing the word general:

    Though of erect nature, man is far above the plants. For man’s superior part, his head, is turned toward the superior part of the world, and his inferior part is turned toward the inferior world; and therefore he is perfectly disposed as to the general situation of his body. Plants have the superior part turned towards the lower world, since their roots correspond to the mouth, and their inferior parts towards the upper world.
    Thomas Aquinas (c. 1225–1274)