Algebraic Properties
The following equalities mean: Either both sides are undefined, or both sides are defined and equal. This is true for any .
The following is true whenever the right-hand side is defined, for any .
In general, all laws of arithmetic are valid as long as all the occurring expressions are defined.
Read more about this topic: Real Projective Line
Famous quotes containing the words algebraic and/or properties:
“I have no scheme about it,—no designs on men at all; and, if I had, my mode would be to tempt them with the fruit, and not with the manure. To what end do I lead a simple life at all, pray? That I may teach others to simplify their lives?—and so all our lives be simplified merely, like an algebraic formula? Or not, rather, that I may make use of the ground I have cleared, to live more worthily and profitably?”
—Henry David Thoreau (1817–1862)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (1632–1704)