Definition
The rational normal curve may be given parametrically as the image of the map
which assigns to the homogeneous coordinates the value
In the affine coordinates of the chart the map is simply
That is, the rational normal curve is the closure by a single point at infinity of the affine curve .
Equivalently, rational normal curve may be understood to be a projective variety, defined as the common zero locus of the homogeneous polynomials
where are the homogeneous coordinates on . The full set of these polynomials is not needed; it is sufficient to pick n of these to specify the curve.
Read more about this topic: Rational Normal Curve
Famous quotes containing the word definition:
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)