Functions of Random Variables
A new random variable Y can be defined by applying a real Borel measurable function to the outcomes of a real-valued random variable X. The cumulative distribution function of is
If function g is invertible, i.e. g−1 exists, and increasing, then the previous relation can be extended to obtain
and, again with the same hypotheses of invertibility of g, assuming also differentiability, we can find the relation between the probability density functions by differentiating both sides with respect to y, in order to obtain
- .
If there is no invertibility of g but each y admits at most a countable number of roots (i.e. a finite, or countably infinite, number of xi such that y = g(xi)) then the previous relation between the probability density functions can be generalized with
where xi = gi-1(y). The formulas for densities do not demand g to be increasing.
In the measure-theoretic, axiomatic approach to probability, if we have a random variable on and a Borel measurable function, then will also be a random variable on, since the composition of measurable functions is also measurable. (However, this is not true if is Lebesgue measurable.) The same procedure that allowed one to go from a probability space to can be used to obtain the distribution of .
Read more about this topic: Random Variable
Famous quotes containing the words functions of, functions, random and/or variables:
“One of the most highly valued functions of used parents these days is to be the villains of their childrens lives, the people the child blames for any shortcomings or disappointments. But if your identity comes from your parents failings, then you remain forever a member of the child generation, stuck and unable to move on to an adulthood in which you identify yourself in terms of what you do, not what has been done to you.”
—Frank Pittman (20th century)
“In todays world parents find themselves at the mercy of a society which imposes pressures and priorities that allow neither time nor place for meaningful activities and relations between children and adults, which downgrade the role of parents and the functions of parenthood, and which prevent the parent from doing things he wants to do as a guide, friend, and companion to his children.”
—Urie Bronfenbrenner (b. 1917)
“Novels as dull as dishwater, with the grease of random sentiments floating on top.”
—Italo Calvino (19231985)
“The variables are surprisingly few.... One can whip or be whipped; one can eat excrement or quaff urine; mouth and private part can be meet in this or that commerce. After which there is the gray of morning and the sour knowledge that things have remained fairly generally the same since man first met goat and woman.”
—George Steiner (b. 1929)