Functions of Random Variables
A new random variable Y can be defined by applying a real Borel measurable function to the outcomes of a real-valued random variable X. The cumulative distribution function of is
If function g is invertible, i.e. g−1 exists, and increasing, then the previous relation can be extended to obtain
and, again with the same hypotheses of invertibility of g, assuming also differentiability, we can find the relation between the probability density functions by differentiating both sides with respect to y, in order to obtain
- .
If there is no invertibility of g but each y admits at most a countable number of roots (i.e. a finite, or countably infinite, number of xi such that y = g(xi)) then the previous relation between the probability density functions can be generalized with
where xi = gi-1(y). The formulas for densities do not demand g to be increasing.
In the measure-theoretic, axiomatic approach to probability, if we have a random variable on and a Borel measurable function, then will also be a random variable on, since the composition of measurable functions is also measurable. (However, this is not true if is Lebesgue measurable.) The same procedure that allowed one to go from a probability space to can be used to obtain the distribution of .
Read more about this topic: Random Variable
Famous quotes containing the words functions of, functions, random and/or variables:
“In todays world parents find themselves at the mercy of a society which imposes pressures and priorities that allow neither time nor place for meaningful activities and relations between children and adults, which downgrade the role of parents and the functions of parenthood, and which prevent the parent from doing things he wants to do as a guide, friend, and companion to his children.”
—Urie Bronfenbrenner (b. 1917)
“Mark the babe
Not long accustomed to this breathing world;
One that hath barely learned to shape a smile,
Though yet irrational of soul, to grasp
With tiny fingerto let fall a tear;
And, as the heavy cloud of sleep dissolves,
To stretch his limbs, bemocking, as might seem,
The outward functions of intelligent man.”
—William Wordsworth (17701850)
“Man always made, and still makes, grotesque blunders in selecting and measuring forces, taken at random from the heap, but he never made a mistake in the value he set on the whole, which he symbolized as unity and worshipped as God. To this day, his attitude towards it has never changed, though science can no longer give to force a name.”
—Henry Brooks Adams (18381918)
“The variables are surprisingly few.... One can whip or be whipped; one can eat excrement or quaff urine; mouth and private part can be meet in this or that commerce. After which there is the gray of morning and the sour knowledge that things have remained fairly generally the same since man first met goat and woman.”
—George Steiner (b. 1929)