Random Variable - Functions of Random Variables

Functions of Random Variables

A new random variable Y can be defined by applying a real Borel measurable function to the outcomes of a real-valued random variable X. The cumulative distribution function of is

If function g is invertible, i.e. g−1 exists, and increasing, then the previous relation can be extended to obtain

and, again with the same hypotheses of invertibility of g, assuming also differentiability, we can find the relation between the probability density functions by differentiating both sides with respect to y, in order to obtain

.

If there is no invertibility of g but each y admits at most a countable number of roots (i.e. a finite, or countably infinite, number of xi such that y = g(xi)) then the previous relation between the probability density functions can be generalized with

where xi = gi-1(y). The formulas for densities do not demand g to be increasing.

In the measure-theoretic, axiomatic approach to probability, if we have a random variable on and a Borel measurable function, then will also be a random variable on, since the composition of measurable functions is also measurable. (However, this is not true if is Lebesgue measurable.) The same procedure that allowed one to go from a probability space to can be used to obtain the distribution of .

Read more about this topic:  Random Variable

Famous quotes containing the words functions of, functions, random and/or variables:

    Mark the babe
    Not long accustomed to this breathing world;
    One that hath barely learned to shape a smile,
    Though yet irrational of soul, to grasp
    With tiny finger—to let fall a tear;
    And, as the heavy cloud of sleep dissolves,
    To stretch his limbs, bemocking, as might seem,
    The outward functions of intelligent man.
    William Wordsworth (1770–1850)

    Let us stop being afraid. Of our own thoughts, our own minds. Of madness, our own or others’. Stop being afraid of the mind itself, its astonishing functions and fandangos, its complications and simplifications, the wonderful operation of its machinery—more wonderful because it is not machinery at all or predictable.
    Kate Millett (b. 1934)

    And catch the gleaming of a random light,
    That tells me that the ship I seek is passing, passing.
    Paul Laurence Dunbar (1872–1906)

    Science is feasible when the variables are few and can be enumerated; when their combinations are distinct and clear. We are tending toward the condition of science and aspiring to do it. The artist works out his own formulas; the interest of science lies in the art of making science.
    Paul Valéry (1871–1945)