In probability theory, the probability-generating function of a discrete random variable is a power series representation (the generating function) of the probability mass function of the random variable. Probability-generating functions are often employed for their succinct description of the sequence of probabilities Pr(X = i) in the probability mass function for a random variable X, and to make available the well-developed theory of power series with non-negative coefficients.
Read more about Probability-generating Function: Examples, Related Concepts
Famous quotes containing the word function:
“Think of the tools in a tool-box: there is a hammer, pliers, a saw, a screwdriver, a rule, a glue-pot, nails and screws.—The function of words are as diverse as the functions of these objects.”
—Ludwig Wittgenstein (1889–1951)