Random Fibonacci Sequence - Description

Description

The random Fibonacci sequence is an integer random sequence {fn}, where f1 = f2 = 1 and the subsequent terms are determined from the random recurrence relation


f_n = \begin{cases}
f_{n-1}+f_{n-2}, & \text{ with probability 1/2}; \\
f_{n-1}-f_{n-2}, & \text{ with probability 1/2}.
\end{cases}

A run of the random Fibonacci sequence starts with 1,1 and the value of the each subsequent term is determined by a fair coin toss: given two consecutive elements of the sequence, the next element is either their sum or their difference with probability 1/2, independently of all the choices made previously. If in the random Fibonacci sequence the plus sign is chosen at each step, the corresponding run is the Fibonacci sequence {Fn},

If the signs alternate in minus-plus-plus-minus-plus-plus-... pattern, the result is the sequence

However, such patterns occur with vanishing probability in a random experiment. In a typical run, the terms will not follow a predictable pattern:

 1, 1, 2, 3, 1, -2, -3, -5, -2, -3, \ldots
\text{ for the signs } +, +, -, -, -, +, -, -, \ldots.

Similarly to the deterministic case, the random Fibonacci sequence may be profitably described via matrices:

where the signs are chosen independently for different n with equal probabilities for + or −. Thus

where {Mk} is a sequence of independent identically distributed random matrices taking values A or B with probability 1/2:

 A=\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \quad
B=\begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}.

Read more about this topic:  Random Fibonacci Sequence

Famous quotes containing the word description:

    The Sage of Toronto ... spent several decades marveling at the numerous freedoms created by a “global village” instantly and effortlessly accessible to all. Villages, unlike towns, have always been ruled by conformism, isolation, petty surveillance, boredom and repetitive malicious gossip about the same families. Which is a precise enough description of the global spectacle’s present vulgarity.
    Guy Debord (b. 1931)

    Whose are the truly labored sentences? From the weak and flimsy periods of the politician and literary man, we are glad to turn even to the description of work, the simple record of the month’s labor in the farmer’s almanac, to restore our tone and spirits.
    Henry David Thoreau (1817–1862)

    Do not require a description of the countries towards which you sail. The description does not describe them to you, and to- morrow you arrive there, and know them by inhabiting them.
    Ralph Waldo Emerson (1803–1882)