Random Fibonacci Sequence

In mathematics, the random Fibonacci sequence is a stochastic analogue of the Fibonacci sequence defined by the recurrence relation fn = fn−1 ± fn−2, where the signs + or − are chosen at random with equal probability 1/2, independently for different n. By a theorem of Harry Kesten and Hillel Fürstenberg, random recurrent sequences of this kind grow at a certain exponential rate, but it is difficult to compute the rate explicitly. In 1999, Divakar Viswanath showed that the growth rate of the random Fibonacci sequence is equal to 1.1319882487943…, a mathematical constant that was later named Viswanath's constant.

Read more about Random Fibonacci Sequence:  Description, Growth Rate, Related Work

Famous quotes containing the words random and/or sequence:

    It is a secret from nobody that the famous random event is most likely to arise from those parts of the world where the old adage “There is no alternative to victory” retains a high degree of plausibility.
    Hannah Arendt (1906–1975)

    We have defined a story as a narrative of events arranged in their time-sequence. A plot is also a narrative of events, the emphasis falling on causality. “The king died and then the queen died” is a story. “The king died, and then the queen died of grief” is a plot. The time sequence is preserved, but the sense of causality overshadows it.
    —E.M. (Edward Morgan)