Quotient Group - Quotients of Lie Groups

Quotients of Lie Groups

If G is a Lie group and N is a normal Lie subgroup of G, the quotient G / N is also a Lie group. In this case, the original group G has the structure of a fiber bundle (specifically, a principal N-bundle), with base space G / N and fiber N.

For a non-normal Lie subgroup N, the space G / N of left cosets is not a group, but simply a differentiable manifold on which G acts. The result is known as a homogeneous space.

Read more about this topic:  Quotient Group

Famous quotes containing the words lie and/or groups:

    True Civilization does not lie in gas, nor in steam, nor in turn-tables. It lies in the reduction of the traces of original sin.
    Charles Baudelaire (1821–1867)

    In properly organized groups no faith is required; what is required is simply a little trust and even that only for a little while, for the sooner a man begins to verify all he hears the better it is for him.
    George Gurdjieff (c. 1877–1949)