Quotient Group - Product of Subsets of A Group

Product of Subsets of A Group

In the following discussion, we will use a binary operation on the subsets of G: if two subsets S and T of G are given, we define their product as ST = {st : sStT}. This operation is associative and has as identity element the singleton {e}, where e is the identity element of G. Thus, the set of all subsets of G forms a monoid under this operation.

In terms of this operation we can first explain what a quotient group is, and then explain what a normal subgroup is:

A quotient group of a group G is a partition of G which is itself a group under this operation.

It is fully determined by the subset containing e. A normal subgroup of G is the set containing e in any such partition. The subsets in the partition are the cosets of this normal subgroup.

A subgroup N of a group G is normal if and only if the coset equality aN = Na holds for all a in G. In terms of the binary operation on subsets defined above, a normal subgroup of G is a subgroup that commutes with every subset of G and is denoted NG. A subgroup that permutes with every subgroup of G is called a permutable subgroup.

Read more about this topic:  Quotient Group

Famous quotes containing the words product of, product and/or group:

    A product of the untalented, sold by the unprincipled to the utterly bewildered.
    Al Capp (1909–1979)

    ...In the past, as now, [Hollywood] was a stamping ground for tastelessness, violence, and hyperbole, but once upon a time it turned out a product which sweetened the flavor of life all over the world.
    Anita Loos (1888–1981)

    He hung out of the window a long while looking up and down the street. The world’s second metropolis. In the brick houses and the dingy lamplight and the voices of a group of boys kidding and quarreling on the steps of a house opposite, in the regular firm tread of a policeman, he felt a marching like soldiers, like a sidewheeler going up the Hudson under the Palisades, like an election parade, through long streets towards something tall white full of colonnades and stately. Metropolis.
    John Dos Passos (1896–1970)