Product of Subsets of A Group
In the following discussion, we will use a binary operation on the subsets of G: if two subsets S and T of G are given, we define their product as ST = {st : s ∈ S ∧ t ∈ T}. This operation is associative and has as identity element the singleton {e}, where e is the identity element of G. Thus, the set of all subsets of G forms a monoid under this operation.
In terms of this operation we can first explain what a quotient group is, and then explain what a normal subgroup is:
- A quotient group of a group G is a partition of G which is itself a group under this operation.
It is fully determined by the subset containing e. A normal subgroup of G is the set containing e in any such partition. The subsets in the partition are the cosets of this normal subgroup.
A subgroup N of a group G is normal if and only if the coset equality aN = Na holds for all a in G. In terms of the binary operation on subsets defined above, a normal subgroup of G is a subgroup that commutes with every subset of G and is denoted N ◁ G. A subgroup that permutes with every subgroup of G is called a permutable subgroup.
Read more about this topic: Quotient Group
Famous quotes containing the words product of, product and/or group:
“The product of mental laborsciencealways stands far below its value, because the labor-time necessary to reproduce it has no relation at all to the labor-time required for its original production.”
—Karl Marx (18181883)
“The history is always the same the product is always different and the history interests more than the product. More, that is, more. Yes. But if the product was not different the history which is the same would not be more interesting.”
—Gertrude Stein (18741946)
“Remember that the peer group is important to young adolescents, and theres nothing wrong with that. Parents are often just as important, however. Dont give up on the idea that you can make a difference.”
—The Lions Clubs International and the Quest Nation. The Surprising Years, I, ch.5 (1985)