Quotient Group - Product of Subsets of A Group

Product of Subsets of A Group

In the following discussion, we will use a binary operation on the subsets of G: if two subsets S and T of G are given, we define their product as ST = {st : sStT}. This operation is associative and has as identity element the singleton {e}, where e is the identity element of G. Thus, the set of all subsets of G forms a monoid under this operation.

In terms of this operation we can first explain what a quotient group is, and then explain what a normal subgroup is:

A quotient group of a group G is a partition of G which is itself a group under this operation.

It is fully determined by the subset containing e. A normal subgroup of G is the set containing e in any such partition. The subsets in the partition are the cosets of this normal subgroup.

A subgroup N of a group G is normal if and only if the coset equality aN = Na holds for all a in G. In terms of the binary operation on subsets defined above, a normal subgroup of G is a subgroup that commutes with every subset of G and is denoted NG. A subgroup that permutes with every subgroup of G is called a permutable subgroup.

Read more about this topic:  Quotient Group

Famous quotes containing the words product of, product and/or group:

    The product of mental labor—science—always stands far below its value, because the labor-time necessary to reproduce it has no relation at all to the labor-time required for its original production.
    Karl Marx (1818–1883)

    The history is always the same the product is always different and the history interests more than the product. More, that is, more. Yes. But if the product was not different the history which is the same would not be more interesting.
    Gertrude Stein (1874–1946)

    Remember that the peer group is important to young adolescents, and there’s nothing wrong with that. Parents are often just as important, however. Don’t give up on the idea that you can make a difference.
    —The Lions Clubs International and the Quest Nation. The Surprising Years, I, ch.5 (1985)