Quotient Group - Product of Subsets of A Group

Product of Subsets of A Group

In the following discussion, we will use a binary operation on the subsets of G: if two subsets S and T of G are given, we define their product as ST = {st : sStT}. This operation is associative and has as identity element the singleton {e}, where e is the identity element of G. Thus, the set of all subsets of G forms a monoid under this operation.

In terms of this operation we can first explain what a quotient group is, and then explain what a normal subgroup is:

A quotient group of a group G is a partition of G which is itself a group under this operation.

It is fully determined by the subset containing e. A normal subgroup of G is the set containing e in any such partition. The subsets in the partition are the cosets of this normal subgroup.

A subgroup N of a group G is normal if and only if the coset equality aN = Na holds for all a in G. In terms of the binary operation on subsets defined above, a normal subgroup of G is a subgroup that commutes with every subset of G and is denoted NG. A subgroup that permutes with every subgroup of G is called a permutable subgroup.

Read more about this topic:  Quotient Group

Famous quotes containing the words product of, product and/or group:

    These facts have always suggested to man the sublime creed that the world is not the product of manifold power, but of one will, of one mind; and that one mind is everywhere active, in each ray of the star, in each wavelet of the pool; and whatever opposes that will is everywhere balked and baffled, because things are made so, and not otherwise.
    Ralph Waldo Emerson (1803–1882)

    These facts have always suggested to man the sublime creed that the world is not the product of manifold power, but of one will, of one mind; and that one mind is everywhere active, in each ray of the star, in each wavelet of the pool; and whatever opposes that will is everywhere balked and baffled, because things are made so, and not otherwise.
    Ralph Waldo Emerson (1803–1882)

    The poet who speaks out of the deepest instincts of man will be heard. The poet who creates a myth beyond the power of man to realize is gagged at the peril of the group that binds him. He is the true revolutionary: he builds a new world.
    Babette Deutsch (1895–1982)