Examples
Consider the group of integers Z (under addition) and the subgroup 2Z consisting of all even integers. This is a normal subgroup, because Z is abelian. There are only two cosets: the set of even integers and the set of odd integers; therefore, the quotient group Z/2Z is the cyclic group with two elements. This quotient group is isomorphic with the set { 0, 1 } with addition modulo 2; informally, it is sometimes said that Z/2Z equals the set { 0, 1 } with addition modulo 2.
A slight generalization of the last example. Once again consider the group of integers Z under addition. Let n be any positive integer. We will consider the subgroup nZ of Z consisting of all multiples of n. Once again nZ is normal in Z because Z is abelian. The cosets are the collection {nZ, 1+nZ, ..., (n−2)+nZ, (n−1)+nZ}. An integer k belongs to the coset r+nZ, where r is the remainder when dividing k by n. The quotient Z/nZ can be thought of as the group of "remainders" modulo n. This is a cyclic group of order n.
The twelfth roots of unity, which are points on the unit circle, form a multiplicative abelian group G, shown on the picture on the right as colored balls with the number at each point giving its complex argument. Consider its subgroup N made of the fourth roots of unity, shown as red balls. This normal subgroup splits the group into three cosets, shown in red, green and blue. One can check that the cosets form a group of three elements (the product of a red element with a blue element is blue, the inverse of a blue element is green, etc.). Thus, the quotient group G/N is the group of three colors, which turns out to be the cyclic group with three elements.
Consider the group of real numbers R under addition, and the subgroup Z of integers. The cosets of Z in R are all sets of the form a+Z, with 0 ≤ a < 1 a real number. Adding such cosets is done by adding the corresponding real numbers, and subtracting 1 if the result is greater than or equal to 1. The quotient group R/Z is isomorphic to the circle group S1, the group of complex numbers of absolute value 1 under multiplication, or correspondingly, the group of rotations in 2D about the origin, i.e., the special orthogonal group SO(2). An isomorphism is given by f(a+Z) = exp(2πia) (see Euler's identity).
If G is the group of invertible 3 × 3 real matrices, and N is the subgroup of 3 × 3 real matrices with determinant 1, then N is normal in G (since it is the kernel of the determinant homomorphism). The cosets of N are the sets of matrices with a given determinant, and hence G/N is isomorphic to the multiplicative group of non-zero real numbers.
Consider the abelian group Z4 = Z/4Z (that is, the set { 0, 1, 2, 3 } with addition modulo 4), and its subgroup { 0, 2 } . The quotient group Z4/{ 0, 2 } is { { 0, 2 }, { 1, 3 } } . This is a group with identity element { 0, 2 }, and group operations such as { 0, 2 } + { 1, 3 } = { 1, 3}. Both the subgroup { 0, 2 } and the quotient group { { 0, 2 }, { 1, 3 } } are isomorphic with Z2.
Consider the multiplicative group . The set N of nth residues is a multiplicative subgroup isomorphic to . Then N is normal in G and the factor group G/N has the cosets N, (1+n)N, (1+n)2N, ..., (1+n)n−1N. The Pallier cryptosystem is based on the conjecture that it is difficult to determine the coset of a random element of G without knowing the factorization of n.
Read more about this topic: Quotient Group
Famous quotes containing the word examples:
“No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.”
—André Breton (18961966)
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)
“In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.”
—Michel de Montaigne (15331592)