Queueing Theory - Limitations of Queueing Theory

Limitations of Queueing Theory

The assumptions of classical queueing theory may be too restrictive to be able to model real-world situations exactly. The complexity of production lines with product-specific characteristics cannot be handled with those models. Therefore specialized tools have been developed to simulate, analyze, visualize and optimize time dynamic queueing line behavior.

For example; the mathematical models often assume infinite numbers of customers, infinite queue capacity, or no bounds on inter-arrival or service times, when it is quite apparent that these bounds must exist in reality. Often, although the bounds do exist, they can be safely ignored because the differences between the real-world and theory is not statistically significant, as the probability that such boundary situations might occur is remote compared to the expected normal situation. Furthermore, several studies show the robustness of queueing models outside their assumptions. In other cases the theoretical solution may either prove intractable or insufficiently informative to be useful.

Alternative means of analysis have thus been devised in order to provide some insight into problems that do not fall under the scope of queueing theory, although they are often scenario-specific because they generally consist of computer simulations or analysis of experimental data. See network traffic simulation.

Read more about this topic:  Queueing Theory

Famous quotes containing the words limitations of, limitations and/or theory:

    The motion picture made in Hollywood, if it is to create art at all, must do so within such strangling limitations of subject and treatment that it is a blind wonder it ever achieves any distinction beyond the purely mechanical slickness of a glass and chromium bathroom.
    Raymond Chandler (1888–1959)

    The limitations of pleasure cannot be overcome by more pleasure.
    Mason Cooley (b. 1927)

    Could Shakespeare give a theory of Shakespeare?
    Ralph Waldo Emerson (1803–1882)