Quaternion Algebra - Application

Application

Quaternion algebras are applied in number theory, particularly to quadratic forms. They are concrete structures that generate the elements of order two in the Brauer group of F. (For some fields, including algebraic number fields, every element of index 2 in its Brauer group is represented by a quaternion algebra. A theorem of Merkurjev says the elements of index 2 in the Brauer group of any field are represented by a tensor product of quaternion algebras.) In particular, over p-adic fields the construction of quaternion algebras can be viewed as the quadratic Hilbert symbol of local class field theory.

Read more about this topic:  Quaternion Algebra

Famous quotes containing the word application:

    Great abilites are not requisite for an Historian; for in historical composition, all the greatest powers of the human mind are quiescent. He has facts ready to his hand; so there is no exercise of invention. Imagination is not required in any degree; only about as much as is used in the lowest kinds of poetry. Some penetration, accuracy, and colouring, will fit a man for the task, if he can give the application which is necessary.
    Samuel Johnson (1709–1784)

    It would be disingenuous, however, not to point out that some things are considered as morally certain, that is, as having sufficient certainty for application to ordinary life, even though they may be uncertain in relation to the absolute power of God.
    René Descartes (1596–1650)

    My business is stanching blood and feeding fainting men; my post the open field between the bullet and the hospital. I sometimes discuss the application of a compress or a wisp of hay under a broken limb, but not the bearing and merits of a political movement. I make gruel—not speeches; I write letters home for wounded soldiers, not political addresses.
    Clara Barton (1821–1912)