Application
Quaternion algebras are applied in number theory, particularly to quadratic forms. They are concrete structures that generate the elements of order two in the Brauer group of F. (For some fields, including algebraic number fields, every element of index 2 in its Brauer group is represented by a quaternion algebra. A theorem of Merkurjev says the elements of index 2 in the Brauer group of any field are represented by a tensor product of quaternion algebras.) In particular, over p-adic fields the construction of quaternion algebras can be viewed as the quadratic Hilbert symbol of local class field theory.
Read more about this topic: Quaternion Algebra
Famous quotes containing the word application:
“If you would be a favourite of your king, address yourself to his weaknesses. An application to his reason will seldom prove very successful.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)
“The best political economy is the care and culture of men; for, in these crises, all are ruined except such as are proper individuals, capable of thought, and of new choice and the application of their talent to new labor.”
—Ralph Waldo Emerson (18031882)
“May my application so close
To so endless a repetition
Not make me tired and morose
And resentful of mans condition.”
—Robert Frost (18741963)