Quaternion Algebra - Application

Application

Quaternion algebras are applied in number theory, particularly to quadratic forms. They are concrete structures that generate the elements of order two in the Brauer group of F. (For some fields, including algebraic number fields, every element of index 2 in its Brauer group is represented by a quaternion algebra. A theorem of Merkurjev says the elements of index 2 in the Brauer group of any field are represented by a tensor product of quaternion algebras.) In particular, over p-adic fields the construction of quaternion algebras can be viewed as the quadratic Hilbert symbol of local class field theory.

Read more about this topic:  Quaternion Algebra

Famous quotes containing the word application:

    We will not be imposed upon by this vast application of forces. We believe that most things will have to be accomplished still by the application called Industry. We are rather pleased, after all, to consider the small private, but both constant and accumulated, force which stands behind every spade in the field. This it is that makes the valleys shine, and the deserts really bloom.
    Henry David Thoreau (1817–1862)

    By an application of the theory of relativity to the taste of readers, to-day in Germany I am called a German man of science, and in England I am represented as a Swiss Jew. If I come to be regarded as a bĂȘte noire the descriptions will be reversed, and I shall become a Swiss Jew for the Germans and a German man of science for the English!
    Albert Einstein (1879–1955)

    The receipt to make a speaker, and an applauded one too, is short and easy.—Take of common sense quantum sufficit, add a little application to the rules and orders of the House, throw obvious thoughts in a new light, and make up the whole with a large quantity of purity, correctness, and elegancy of style.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)