Ck Fields
Quasi-algebraically closed fields are also called C1. A Ck field, more generally, is one for which any homogeneous polynomial of degree d in N variables has a non-trivial zero, provided
- dk < N,
for k ≥ 1. If a field is Ci then so is a finite extension. The C0 fields are precisely the algebraically closed fields.
Lang and Nagata proved that if a field is Ck, then any extension of transcendence degree n is Ck+n. The smallest k such that K is a Ck field ( if no such number exists), is called the diophantine dimension dd(K) of K.
Read more about this topic: Quasi-algebraically Closed Field
Famous quotes containing the word fields:
“If the Union is once severed, the line of separation will grow wider and wider, and the controversies which are now debated and settled in the halls of legislation will then be tried in fields of battle and determined by the sword.”
—Andrew Jackson (17671845)