Quasi-algebraically Closed Field

Quasi-algebraically Closed Field

In mathematics, a field F is called quasi-algebraically closed (or C1) if every non-constant homogeneous polynomial P over F has a non-trivial zero provided the number of its variables is more than its degree. The idea of quasi-algebraically closed fields was investigated by C. C. Tsen, a student of Emmy Noether in a 1936 paper; and later in the 1951 Princeton University dissertation of Serge Lang. The idea itself is attributed to Lang's advisor Emil Artin.

Formally, if P is a non-constant homogeneous polynomial in variables

X1, ..., XN,

and of degree d satisfying

d < N

then it has a non-trivial zero over F; that is, for some xi in F, not all 0, we have

P(x1, ..., xN) = 0.

In geometric language, the hypersurface defined by P, in projective space of dimension N − 1, then has a point over F.

Read more about Quasi-algebraically Closed Field:  Examples, Properties, Ck Fields

Famous quotes containing the words closed and/or field:

    Alas for the cripple Practice when it seeks to come up with the bird Theory, which flies before it. Try your design on the best school. The scholars are of all ages and temperaments and capacities. It is difficult to class them, some are too young, some are slow, some perverse. Each requires so much consideration, that the morning hope of the teacher, of a day of love and progress, is often closed at evening by despair.
    Ralph Waldo Emerson (1803–1882)

    Because mothers and daughters can affirm and enjoy their commonalities more readily, they are more likely to see how they might advance their individual interests in tandem, without one having to be sacrificed for the other.
    —Mary Field Belenky (20th century)