The quantum Zeno effect is a name coined by George Sudarshan and Baidyanath Misra of the University of Texas in 1977 in their analysis of the situation in which an unstable particle, if observed continuously, will never decay. One can "freeze" the evolution of the system by measuring it frequently enough in its (known) initial state. The meaning of the term has since expanded, leading to a more technical definition in which time evolution can be suppressed not only by measurement: the quantum Zeno effect is the suppression of unitary time evolution caused by quantum decoherence in quantum systems provided by a variety of sources: measurement, interactions with the environment, stochastic fields, and so on. As an outgrowth of study of the quantum Zeno effect, it has become clear that applying a series of sufficiently strong and fast pulses with appropriate symmetry can also decouple a system from its decohering environment.
The name comes from Zeno's arrow paradox which states that, since an arrow in flight is not seen to move during any single instant, it cannot possibly be moving at all.
An earlier theoretical exploration of this effect of measurement was published in 1974 by Degasperis et al. and Alan Turing described it in 1954:
It is easy to show using standard theory that if a system starts in an eigenstate of some observable, and measurements are made of that observable N times a second, then, even if the state is not a stationary one, the probability that the system will be in the same state after, say, one second, tends to one as N tends to infinity; that is, that continual observations will prevent motion …
— Alan Turing as quoted by A. Hodges in Alan Turing: Life and Legacy of a Great Thinker p. 54
resulting in the earlier name Turing paradox. The idea is contained in the early work by John von Neumann, sometimes called the reduction postulate.
According to the reduction postulate, each measurement causes the wavefunction to "collapse" to a pure eigenstate of the measurement basis. In the context of this effect, an "observation" can simply be the absorption of a particle, without an observer in any conventional sense. However, there is controversy over the interpretation of the effect, sometimes referred to as the "measurement problem" in traversing the interface between microscopic and macroscopic.
Closely related (and sometimes not distinguished from the quantum Zeno effect) is the watchdog effect, in which the time evolution of a system is affected by its continuous coupling to the environment.
Read more about Quantum Zeno Effect: Description, Various Realizations and General Definition, Periodic Measurement of A Quantum System, Experiments and Discussion, Significance To Cognitive Science, In Popular Culture
Famous quotes containing the words quantum and/or effect:
“But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.”
—Antonin Artaud (18961948)
“I would define the poetic effect as the capacity that a text displays for continuing to generate different readings, without ever being completely consumed.”
—Umberto Eco (b. 1932)