Quantum Zeno Effect - Periodic Measurement of A Quantum System

Periodic Measurement of A Quantum System

Consider a system in a state A, which is the eigenstate of some measurement operator. Say the system under free time evolution will decay with a certain probability into state B. If measurements are made periodically, with some finite interval between each one, at each measurement, the wave function collapses to an eigenstate of the measurement operator. Between the measurements, the system evolves away from this eigenstate into a superposition state of the states A and B. When the superposition state is measured, it will again collapse, either back into state A as in the first measurement, or away into state B. However, its probability of collapsing into state B, after a very short amount of time t, is proportional to t², since probabilities are proportional to squared amplitudes, and amplitudes behave linearly. Thus, in the limit of a large number of short intervals, with a measurement at the end of every interval, the probability of making the transition to B goes to zero.

According to decoherence theory, the collapse of the wave function is not a discrete, instantaneous event. A "measurement" is equivalent to strongly coupling the quantum system to the noisy thermal environment for a brief period of time, and continuous strong coupling is equivalent to frequent "measurement". The time it takes for the wave function to "collapse" is related to the decoherence time of the system when coupled to the environment. The stronger the coupling is, and the shorter the decoherence time, the faster it will collapse. So in the decoherence picture, a perfect implementation of the quantum Zeno effect corresponds to the limit where a quantum system is continuously coupled to the environment, and where that coupling is infinitely strong, and where the "environment" is an infinitely large source of thermal randomness.

Read more about this topic:  Quantum Zeno Effect

Famous quotes containing the words periodic, measurement, quantum and/or system:

    It can be demonstrated that the child’s contact with the real world is strengthened by his periodic excursions into fantasy. It becomes easier to tolerate the frustrations of the real world and to accede to the demands of reality if one can restore himself at intervals in a world where the deepest wishes can achieve imaginary gratification.
    Selma H. Fraiberg (20th century)

    That’s the great danger of sectarian opinions, they always accept the formulas of past events as useful for the measurement of future events and they never are, if you have high standards of accuracy.
    John Dos Passos (1896–1970)

    A personality is an indefinite quantum of traits which is subject to constant flux, change, and growth from the birth of the individual in the world to his death. A character, on the other hand, is a fixed and definite quantum of traits which, though it may be interpreted with slight differences from age to age and actor to actor, is nevertheless in its essentials forever fixed.
    Hubert C. Heffner (1901–1985)

    Science is a system of statements based on direct experience, and controlled by experimental verification. Verification in science is not, however, of single statements but of the entire system or a sub-system of such statements.
    Rudolf Carnap (1891–1970)