Definition
Recall that a density operator is a non-negative operator on a Hilbert space with unit trace.
Mathematically, a quantum operation is a linear map Φ between spaces of trace class operators on Hilbert spaces H and G such that
- If S is a density operator, Tr(Φ(S)) ≤ 1.
- Φ is completely positive, that is for any natural number n, and any square matrix of size n whose entries are trace-class operators
and which is non-negative, then
is also non-negative. In other words, Φ is completely positive if is positive for all n, where denotes the identity map on the C*-algebra of matrices.
Note that by the first condition quantum operations may not preserve the normalization property of statistical ensembles. In probabilistic terms, quantum operations may be sub-Markovian. In order that a quantum operation preserve the set of density matrices, we need the additional assumption that it is trace-preserving.
Read more about this topic: Quantum Operation
Famous quotes containing the word definition:
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)
“It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possessafter many mysterieswhat one loves.”
—François, Duc De La Rochefoucauld (16131680)
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)