Quantum Operation

In quantum mechanics, a quantum operation (also known as quantum dynamical map or quantum process) is a mathematical formalism used to describe a broad class of transformations that a quantum mechanical system can undergo. This was first discussed as a general stochastic transformation for a density matrix by George Sudarshan. The quantum operation formalism describes not only unitary time evolution or symmetry transformations of isolated systems, but also the effects of measurement and transient interactions with an environment. In the context of quantum computation, a quantum operation is called a quantum channel.

Quantum operations are formulated in terms of the density operator description of a quantum mechanical system. Rigorously, a quantum operation is a linear, completely positive map from the set of density operators into itself.

Some quantum processes cannot be captured within the quantum operation formalism; in principle, the density matrix of a quantum system can undergo completely arbitrary time evolution.

Read more about Quantum Operation:  Background, Definition, Mathematical Development, Non-completely Positive Maps

Famous quotes containing the words quantum and/or operation:

    But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.
    Antonin Artaud (1896–1948)

    You may read any quantity of books, and you may almost as ignorant as you were at starting, if you don’t have, at the back of your minds, the change for words in definite images which can only be acquired through the operation of your observing faculties on the phenomena of nature.
    Thomas Henry Huxley (1825–95)