Experimental Tests
As was emphasized above, quantum gravitational effects are extremely weak and therefore difficult to test. For this reason, the possibility of experimentally testing quantum gravity had not received much attention prior to the late 1990s. However, in the past decade, physicists have realized that evidence for quantum gravitational effects can guide the development of the theory. Since the theoretical development has been slow, the phenomenology of quantum gravity which studies the possibility of experimental tests, has obtained increased attention.
There is presently no confirmed experimental signature of quantum gravitational effects. The most widely pursued possibilities for quantum gravity phenomenology include violations of Lorentz invariance, imprints of quantum gravitational effects in the Cosmic Microwave Background (in particular its polarization), and decoherence induced by fluctuations in the space-time foam.
Read more about this topic: Quantum Gravity
Famous quotes containing the words experimental and/or tests:
“The very hope of experimental philosophy, its expectation of constructing the sciences into a true philosophy of nature, is based on induction, or, if you please, the a priori presumption, that physical causation is universal; that the constitution of nature is written in its actual manifestations, and needs only to be deciphered by experimental and inductive research; that it is not a latent invisible writing, to be brought out by the magic of mental anticipation or metaphysical mediation.”
—Chauncey Wright (18301875)
“Every perversion has survived many tests of its capabilities.”
—Mason Cooley (b. 1927)