Quantum Gravity

Quantum gravity (QG) is the field of theoretical physics which attempts to develop scientific models that unify quantum mechanics (describing three of the four known fundamental interactions) with general relativity (describing the fourth, gravity). It is hoped that development of such a theory would unify all fundamental interactions into a single mathematical framework and describe all known observable interactions in the universe, at both subatomic and cosmological scales.

Such a theory of quantum gravity would yield the same experimental results as ordinary quantum mechanics in conditions of weak gravity (gravitational potentials much less than c2) and the same results as Einsteinian general relativity in phenomena at scales much larger than individual molecules (action much larger than reduced Planck's constant), but moreover be able to predict the outcome of situations where both quantum effects and strong-field gravity are important (at the Planck scale, unless large extra dimension conjectures are correct).

If the theory of quantum gravity also achieves a grand unification of the other known interactions, it is referred to as a theory of everything (TOE).

Motivation for quantizing gravity comes from the remarkable success of the quantum theories of the other three fundamental interactions, and from experimental evidence suggesting that gravity can be made to show quantum effects. Although some quantum gravity theories such as string theory and other unified field theories (or 'theories of everything') attempt to unify gravity with the other fundamental forces, others such as loop quantum gravity make no such attempt; they simply quantize the gravitational field while keeping it separate from the other forces.

Most observed physical phenomena can be described well by quantum mechanics or general relativity, without needing both. This can be thought of as due to an extreme separation of mass scales at which they are important. Quantum effects are usually important only for the "very small", that is, for objects no larger than typical molecules. General relativistic effects, on the other hand, show up mainly for the "very large" bodies such as collapsed stars. (Planets' gravitational fields, as of 2011, are well-described by linearized gravity except for Mercury's perihelion precession; so strong-field effects—any effects of gravity beyond lowest nonvanishing order in φ/c2—have not been observed even in the gravitational fields of planets and main sequence stars). There is a lack of experimental evidence relating to quantum gravity, and classical physics adequately describes the observed effects of gravity over a range of 50 orders of magnitude of mass, i.e., for masses of objects from about 10−23 to 1030 kg. However, certain physical phenomena, such as singularities, are "very small" spatially yet are "very large" from a mass or energy perspective; such objects cannot be understood with current theories of quantum mechanics or general relativity, thus motivating the search for a quantum theory of gravity.

Read more about Quantum Gravity:  Overview, Candidate Theories, Weinberg–Witten Theorem, Experimental Tests

Famous quotes containing the words quantum and/or gravity:

    A personality is an indefinite quantum of traits which is subject to constant flux, change, and growth from the birth of the individual in the world to his death. A character, on the other hand, is a fixed and definite quantum of traits which, though it may be interpreted with slight differences from age to age and actor to actor, is nevertheless in its essentials forever fixed.
    Hubert C. Heffner (1901–1985)

    Grown beyond nature now, soft food for worms,
    They lift frail heads in gravity and good faith.
    Derek Mahon (b. 1941)