Quantum Geometry - Quantum States As Differential Forms

Quantum States As Differential Forms

Main article: Wavefunction See also: Differential forms

Differential forms are used to express quantum states, using the wedge product:

where the position vector is

the differential volume element is

and x1, x2, x3 are an arbitrary set of coordinates, the upper indices indicate contravariance, lower indices indicate covariance, so explicitly the quantum state in differential form is:

The overlap integral is given by:

in differential form this is

The probability of finding the particle in some region of space R is given by the integral over that region:

provided the wave function is normalized. When R is all of 3d position space, the integral must be 1 if the particle exists.

Differential forms are an approach for describing the geometry of curves and surfaces in a coordinate independent way. In quantum mechanics, idealized situations occur in rectangular Cartesian coordinates, such as the potential well, particle in a box, quantum harmonic oscillator, and more realistic approximations in spherical polar coordinates such as electrons in atoms and molecules. For generality, a formalism which can be used in any coordinate system is useful.

Read more about this topic:  Quantum Geometry

Famous quotes containing the words quantum, states, differential and/or forms:

    A personality is an indefinite quantum of traits which is subject to constant flux, change, and growth from the birth of the individual in the world to his death. A character, on the other hand, is a fixed and definite quantum of traits which, though it may be interpreted with slight differences from age to age and actor to actor, is nevertheless in its essentials forever fixed.
    Hubert C. Heffner (1901–1985)

    The traveler to the United States will do well ... to prepare himself for the class-consciousness of the natives. This differs from the already familiar English version in being more extreme and based more firmly on the conviction that the class to which the speaker belongs is inherently superior to all others.
    John Kenneth Galbraith (b. 1908)

    But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.
    Antonin Artaud (1896–1948)

    The most passionate, consistent, extreme and implacable enemy of the Enlightenment and ... all forms of rationalism ... was Johann Georg Hamann. His influence, direct and indirect, upon the romantic revolt against universalism and scientific method ... was considerable and perhaps crucial.
    Isaiah Berlin (b. 1909)