Quantum Geometry - Quantum States As Differential Forms

Quantum States As Differential Forms

Main article: Wavefunction See also: Differential forms

Differential forms are used to express quantum states, using the wedge product:

where the position vector is

the differential volume element is

and x1, x2, x3 are an arbitrary set of coordinates, the upper indices indicate contravariance, lower indices indicate covariance, so explicitly the quantum state in differential form is:

The overlap integral is given by:

in differential form this is

The probability of finding the particle in some region of space R is given by the integral over that region:

provided the wave function is normalized. When R is all of 3d position space, the integral must be 1 if the particle exists.

Differential forms are an approach for describing the geometry of curves and surfaces in a coordinate independent way. In quantum mechanics, idealized situations occur in rectangular Cartesian coordinates, such as the potential well, particle in a box, quantum harmonic oscillator, and more realistic approximations in spherical polar coordinates such as electrons in atoms and molecules. For generality, a formalism which can be used in any coordinate system is useful.

Read more about this topic:  Quantum Geometry

Famous quotes containing the words quantum, states, differential and/or forms:

    The receipt to make a speaker, and an applauded one too, is short and easy.—Take of common sense quantum sufficit, add a little application to the rules and orders of the House, throw obvious thoughts in a new light, and make up the whole with a large quantity of purity, correctness, and elegancy of style.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)

    In the case of a deliberate, palpable, and dangerous exercise of ... powers not granted by the compact, the States ... are in duty bound to interpose for arresting the progress of the evil, and for maintaining within their respective limits the authorities, rights, and liberties appertaining to them.
    James Madison (1751–1836)

    But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.
    Antonin Artaud (1896–1948)

    Your body must become familiar with its death—in all its possible forms and degrees—as a self-evident, imminent, and emotionally neutral step on the way towards the goal you have found worthy of your life.
    Dag Hammarskjöld (1905–1961)