Finite Variation Processes
A process X is said to have finite variation if it has bounded variation over every finite time interval (with probability 1). Such processes are very common including, in particular, all continuously differentiable functions. The quadratic variation exists for all continuous finite variation processes, and is zero.
This statement can be generalized to non-continuous processes. Any càdlàg finite variation process X has quadratic variation equal to the sum of the squares of the jumps of X. To state this more precisely, the left limit of Xt with respect to t is denoted by Xt-, and the jump of X at time t can be written as ΔXt = Xt - Xt-. Then, the quadratic variation is given by
The proof that continuous finite variation processes have zero quadratic variation follows from the following inequality. Here, P is a partition of the interval, and Vt(X) is the variation of X over .
By the continuity of X, this vanishes in the limit as goes to zero.
Read more about this topic: Quadratic Variation
Famous quotes containing the words finite and/or processes:
“We know then the existence and nature of the finite, because we also are finite and have extension. We know the existence of the infinite and are ignorant of its nature, because it has extension like us, but not limits like us. But we know neither the existence nor the nature of God, because he has neither extension nor limits.”
—Blaise Pascal (16231662)
“It has become a peoples war, and peoples of all sorts and races, of every degree of power and variety of fortune, are involved in its sweeping processes of change and settlement.”
—Woodrow Wilson (18561924)