In mathematics, a local martingale is a type of stochastic process, satisfying the localized version of the martingale property. Every martingale is a local martingale; every bounded local martingale is a martingale; however, in general a local martingale is not a martingale, because its expectation can be distorted by large values of small probability. In particular, a driftless diffusion process is a local martingale, but not necessarily a martingale.
Local martingales are essential in stochastic analysis, see Itō calculus, semimartingale, Girsanov theorem.
Read more about Local Martingale: Definition, Martingales Via Local Martingales
Famous quotes containing the word local:
“These native villages are as unchanging as the woman in one of their stories. When she was called before a local justice he asked her age. I have 45 years. But, said the justice, you were forty-five when you appeared before me two years ago. Señor Judge, she replied proudly, drawing herself to her full height, I am not of those who are one thing today and another tomorrow!”
—State of New Mexico, U.S. public relief program (1935-1943)