In mathematics, a local martingale is a type of stochastic process, satisfying the localized version of the martingale property. Every martingale is a local martingale; every bounded local martingale is a martingale; however, in general a local martingale is not a martingale, because its expectation can be distorted by large values of small probability. In particular, a driftless diffusion process is a local martingale, but not necessarily a martingale.
Local martingales are essential in stochastic analysis, see Itō calculus, semimartingale, Girsanov theorem.
Read more about Local Martingale: Definition, Martingales Via Local Martingales
Famous quotes containing the word local:
“America is the worlds living myth. Theres no sense of wrong when you kill an American or blame America for some local disaster. This is our function, to be character types, to embody recurring themes that people can use to comfort themselves, justify themselves and so on. Were here to accommodate. Whatever people need, we provide. A myth is a useful thing.”
—Don Delillo (b. 1926)