Prime Factorization Into Ideals
Any prime number p gives rise to an ideal pOK in the ring of integers OK of a quadratic field K. In line with general theory of splitting of prime ideals in Galois extensions, this may be
- p is inert
- (p) is a prime ideal
- The quotient ring is the finite field with p2 elements: OK/pOK = Fp2
- p splits
- (p) is a product of two distinct prime ideals of OK.
- The quotient ring is the product OK/pOK = Fp × Fp.
- p is ramified
- (p) is the square of a prime ideal of OK.
- The quotient ring contains non-zero nilpotent elements.
The third case happens if and only if p divides the discriminant D. The first and second cases occur when the Kronecker symbol (D/p) equals −1 and +1, respectively. For example, if p is an odd prime not dividing D, then p splits if and only if D is congruent to a square modulo p. The first two cases are in a certain sense equally likely to occur as p runs through the primes, see Chebotarev density theorem.
The law of quadratic reciprocity implies that the splitting behaviour of a prime p in a quadratic field depends only on p modulo D, where D is the field discriminant.
Read more about this topic: Quadratic Field
Famous quotes containing the words prime and/or ideals:
“Few white citizens are acquainted with blacks other than those projected by the media and the socalled educational system, which is nothing more than a system of rewards and punishments based upon ones ability to pledge loyalty oaths to Anglo culture. The media and the educational system are the prime sources of racism in the United States.”
—Ishmael Reed (b. 1938)
“We want our children to become warm, decent human beings who reach out generously to those in need. We hope they find values and ideals to give their lives purpose so they contribute to the world and make it a better place because they have lived in it. Intelligence, success, and high achievement are worthy goals, but they mean nothing if our children are not basically kind and loving people.”
—Neil Kurshan (20th century)