Quadratic Field - Prime Factorization Into Ideals

Prime Factorization Into Ideals

Any prime number p gives rise to an ideal pOK in the ring of integers OK of a quadratic field K. In line with general theory of splitting of prime ideals in Galois extensions, this may be

p is inert
(p) is a prime ideal
The quotient ring is the finite field with p2 elements: OK/pOK = Fp2
p splits
(p) is a product of two distinct prime ideals of OK.
The quotient ring is the product OK/pOK = Fp × Fp.
p is ramified
(p) is the square of a prime ideal of OK.
The quotient ring contains non-zero nilpotent elements.

The third case happens if and only if p divides the discriminant D. The first and second cases occur when the Kronecker symbol (D/p) equals −1 and +1, respectively. For example, if p is an odd prime not dividing D, then p splits if and only if D is congruent to a square modulo p. The first two cases are in a certain sense equally likely to occur as p runs through the primes, see Chebotarev density theorem.

The law of quadratic reciprocity implies that the splitting behaviour of a prime p in a quadratic field depends only on p modulo D, where D is the field discriminant.

Read more about this topic:  Quadratic Field

Famous quotes containing the words prime and/or ideals:

    Ye elms that wave on Malvern Hill
    In prime of morn and May,
    Recall ye how McClellan’s men
    Here stood at bay?
    Herman Melville (1819–1891)

    With the breakdown of the traditional institutions which convey values, more of the burdens and responsibility for transmitting values fall upon parental shoulders, and it is getting harder all the time both to embody the virtues we hope to teach our children and to find for ourselves the ideals and values that will give our own lives purpose and direction.
    Neil Kurshan (20th century)