Quadratic Field - Prime Factorization Into Ideals

Prime Factorization Into Ideals

Any prime number p gives rise to an ideal pOK in the ring of integers OK of a quadratic field K. In line with general theory of splitting of prime ideals in Galois extensions, this may be

p is inert
(p) is a prime ideal
The quotient ring is the finite field with p2 elements: OK/pOK = Fp2
p splits
(p) is a product of two distinct prime ideals of OK.
The quotient ring is the product OK/pOK = Fp × Fp.
p is ramified
(p) is the square of a prime ideal of OK.
The quotient ring contains non-zero nilpotent elements.

The third case happens if and only if p divides the discriminant D. The first and second cases occur when the Kronecker symbol (D/p) equals −1 and +1, respectively. For example, if p is an odd prime not dividing D, then p splits if and only if D is congruent to a square modulo p. The first two cases are in a certain sense equally likely to occur as p runs through the primes, see Chebotarev density theorem.

The law of quadratic reciprocity implies that the splitting behaviour of a prime p in a quadratic field depends only on p modulo D, where D is the field discriminant.

Read more about this topic:  Quadratic Field

Famous quotes containing the words prime and/or ideals:

    I came there as prime steak and now I feel like low-grade hamburger.
    Joycelyn Elders (b. 1933)

    A philistine is a full-grown person whose interests are of a material and commonplace nature, and whose mentality is formed of the stock ideas and conventional ideals of his or her group and time.
    Vladimir Nabokov (1899–1977)