Prime Factorization Into Ideals
Any prime number p gives rise to an ideal pOK in the ring of integers OK of a quadratic field K. In line with general theory of splitting of prime ideals in Galois extensions, this may be
- p is inert
- (p) is a prime ideal
- The quotient ring is the finite field with p2 elements: OK/pOK = Fp2
- p splits
- (p) is a product of two distinct prime ideals of OK.
- The quotient ring is the product OK/pOK = Fp × Fp.
- p is ramified
- (p) is the square of a prime ideal of OK.
- The quotient ring contains non-zero nilpotent elements.
The third case happens if and only if p divides the discriminant D. The first and second cases occur when the Kronecker symbol (D/p) equals −1 and +1, respectively. For example, if p is an odd prime not dividing D, then p splits if and only if D is congruent to a square modulo p. The first two cases are in a certain sense equally likely to occur as p runs through the primes, see Chebotarev density theorem.
The law of quadratic reciprocity implies that the splitting behaviour of a prime p in a quadratic field depends only on p modulo D, where D is the field discriminant.
Read more about this topic: Quadratic Field
Famous quotes containing the words prime and/or ideals:
“No woman in my time will be Prime Minister or Chancellor or Foreign Secretarynot the top jobs. Anyway I wouldnt want to be Prime Minister. You have to give yourself 100%.”
—Margaret Thatcher (b. 1925)
“But I would emphasize again that social and economic solutions, as such, will not avail to satisfy the aspirations of the people unless they conform with the traditions of our race, deeply grooved in their sentiments through a century and a half of struggle for ideals of life that are rooted in religion and fed from purely spiritual springs.”
—Herbert Hoover (18741964)