Prime Factorization Into Ideals
Any prime number p gives rise to an ideal pOK in the ring of integers OK of a quadratic field K. In line with general theory of splitting of prime ideals in Galois extensions, this may be
- p is inert
- (p) is a prime ideal
- The quotient ring is the finite field with p2 elements: OK/pOK = Fp2
- p splits
- (p) is a product of two distinct prime ideals of OK.
- The quotient ring is the product OK/pOK = Fp × Fp.
- p is ramified
- (p) is the square of a prime ideal of OK.
- The quotient ring contains non-zero nilpotent elements.
The third case happens if and only if p divides the discriminant D. The first and second cases occur when the Kronecker symbol (D/p) equals −1 and +1, respectively. For example, if p is an odd prime not dividing D, then p splits if and only if D is congruent to a square modulo p. The first two cases are in a certain sense equally likely to occur as p runs through the primes, see Chebotarev density theorem.
The law of quadratic reciprocity implies that the splitting behaviour of a prime p in a quadratic field depends only on p modulo D, where D is the field discriminant.
Read more about this topic: Quadratic Field
Famous quotes containing the words prime and/or ideals:
“Vanessa wanted to be a ballerina. Dad had such hopes for her.... Corin was the academically brilliant one, and a fencer of Olympic standard. Everything was expected of them, and they fulfilled all expectations. But I was the one of whom nothing was expected. I remember a game the three of us played. Vanessa was the President of the United States, Corin was the British Prime Ministerand I was the royal dog.”
—Lynn Redgrave (b. 1943)
“War is pillage versus resistance and if illusions of magnitude could be transmuted into ideals of magnanimity, peace might be realized.”
—Marianne Moore (18871972)