Relation To Other Topological Notions
- Separation
- Every product of T0 spaces is T0
- Every product of T1 spaces is T1
- Every product of Hausdorff spaces is Hausdorff
- Every product of regular spaces is regular
- Every product of Tychonoff spaces is Tychonoff
- A product of normal spaces need not be normal
- Compactness
- Every product of compact spaces is compact (Tychonoff's theorem)
- A product of locally compact spaces need not be locally compact. However, an arbitrary product of locally compact spaces where all but finitely many are compact is locally compact (This condition is sufficient and necessary).
- Connectedness
- Every product of connected (resp. path-connected) spaces is connected (resp. path-connected)
- Every product of hereditarily disconnected spaces is hereditarily disconnected.
Read more about this topic: Product Topology
Famous quotes containing the words relation to, relation and/or notions:
“Science is the language of the temporal world; love is that of the spiritual world. Man, indeed, describes more than he explains; while the angelic spirit sees and understands. Science saddens man; love enraptures the angel; science is still seeking, love has found. Man judges of nature in relation to itself; the angelic spirit judges of it in relation to heaven. In short to the spirits everything speaks.”
—HonorĂ© De Balzac (17991850)
“Among the most valuable but least appreciated experiences parenthood can provide are the opportunities it offers for exploring, reliving, and resolving ones own childhood problems in the context of ones relation to ones child.”
—Bruno Bettelheim (20th century)
“Your notions of friendship are new to me; I believe every man is born with his quantum, and he cannot give to one without robbing another. I very well know to whom I would give the first place in my friendship, but they are not in the way, I am condemned to another scene, and therefore I distribute it in pennyworths to those about me, and who displease me least, and should do the same to my fellow prisoners if I were condemned to a jail.”
—Jonathan Swift (16671745)