Relation To Other Topological Notions
- Separation
- Every product of T0 spaces is T0
- Every product of T1 spaces is T1
- Every product of Hausdorff spaces is Hausdorff
- Every product of regular spaces is regular
- Every product of Tychonoff spaces is Tychonoff
- A product of normal spaces need not be normal
- Compactness
- Every product of compact spaces is compact (Tychonoff's theorem)
- A product of locally compact spaces need not be locally compact. However, an arbitrary product of locally compact spaces where all but finitely many are compact is locally compact (This condition is sufficient and necessary).
- Connectedness
- Every product of connected (resp. path-connected) spaces is connected (resp. path-connected)
- Every product of hereditarily disconnected spaces is hereditarily disconnected.
Read more about this topic: Product Topology
Famous quotes containing the words relation to, relation and/or notions:
“We must get back into relation, vivid and nourishing relation to the cosmos and the universe. The way is through daily ritual, and is an affair of the individual and the household, a ritual of dawn and noon and sunset, the ritual of the kindling fire and pouring water, the ritual of the first breath, and the last.”
—D.H. (David Herbert)
“To be a good enough parent one must be able to feel secure in ones parenthood, and ones relation to ones child...The security of the parent about being a parent will eventually become the source of the childs feeling secure about himself.”
—Bruno Bettelheim (20th century)
“Your notions of friendship are new to me; I believe every man is born with his quantum, and he cannot give to one without robbing another. I very well know to whom I would give the first place in my friendship, but they are not in the way, I am condemned to another scene, and therefore I distribute it in pennyworths to those about me, and who displease me least, and should do the same to my fellow prisoners if I were condemned to a jail.”
—Jonathan Swift (16671745)