Properties
The product space X, together with the canonical projections, can be characterized by the following universal property: If Y is a topological space, and for every i in I, fi : Y → Xi is a continuous map, then there exists precisely one continuous map f : Y → X such that for each i in I the following diagram commutes:
This shows that the product space is a product in the category of topological spaces. If follows from the above universal property that a map f : Y → X is continuous if and only if fi = pi o f is continuous for all i in I. In many cases it is easier to check that the component functions fi are continuous. Checking whether a map g : X→ Z is continuous is usually more difficult; one tries to use the fact that the pi are continuous in some way.
In addition to being continuous, the canonical projections pi : X → Xi are open maps. This means that any open subset of the product space remains open when projected down to the Xi. The converse is not true: if W is a subspace of the product space whose projections down to all the Xi are open, then W need not be open in X. (Consider for instance W = R2 \ (0,1)2.) The canonical projections are not generally closed maps (consider for example the closed set whose projections onto both axes are R \ {0}).
The product topology is also called the topology of pointwise convergence because of the following fact: a sequence (or net) in X converges if and only if all its projections to the spaces Xi converge. In particular, if one considers the space X = RI of all real valued functions on I, convergence in the product topology is the same as pointwise convergence of functions.
Any product of closed subsets of Xi is a closed set in X.
An important theorem about the product topology is Tychonoff's theorem: any product of compact spaces is compact. This is easy to show for finite products, while the general statement is equivalent to the axiom of choice.
Read more about this topic: Product Topology
Famous quotes containing the word properties:
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)