Product Topology - Definition

Definition

Given X such that

or the (possibly infinite) Cartesian product of the topological spaces Xi, indexed by, and the canonical projections pi : XXi, the product topology on X is defined to be the coarsest topology (i.e. the topology with the fewest open sets) for which all the projections pi are continuous. The product topology is sometimes called the Tychonoff topology.

The open sets in the product topology are unions (finite or infinite) of sets of the form, where each Ui is open in Xi and UiXi only finitely many times.

The product topology on X is the topology generated by sets of the form pi−1(U), where i is in I and U is an open subset of Xi. In other words, the sets {pi−1(U)} form a subbase for the topology on X. A subset of X is open if and only if it is a (possibly infinite) union of intersections of finitely many sets of the form pi−1(U). The pi−1(U) are sometimes called open cylinders, and their intersections are cylinder sets.

We can describe a basis for the product topology using bases of the constituting spaces Xi. A basis consists of sets, where for cofinitely many (all but finitely many) i, (it's the whole space), and otherwise it's a basic open set of .

In particular, for a finite product (in particular, for the product of two topological spaces), the products of base elements of the Xi gives a basis for the product .

In general, the product of the topologies of each Xi forms a basis for what is called the box topology on X. In general, the box topology is finer than the product topology, but for finite products they coincide.

Read more about this topic:  Product Topology

Famous quotes containing the word definition:

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)