Product Topology - Axiom of Choice

Axiom of Choice

The axiom of choice is equivalent to the statement that the product of a collection of non-empty sets is non-empty. The proof is easy enough: one needs only to pick an element from each set to find a representative in the product. Conversely, a representative of the product is a set which contains exactly one element from each component.

The axiom of choice occurs again in the study of (topological) product spaces; for example, Tychonoff's theorem on compact sets is a more complex and subtle example of a statement that is equivalent to the axiom of choice.

Read more about this topic:  Product Topology

Famous quotes containing the words axiom of, axiom and/or choice:

    It’s an old axiom of mine: marry your enemies and behead your friends.
    —Robert N. Lee. Rowland V. Lee. King Edward IV (Ian Hunter)

    It’s an old axiom of mine: marry your enemies and behead your friends.
    —Robert N. Lee. Rowland V. Lee. King Edward IV (Ian Hunter)

    The majority of persons choose their wives with as little prudence as they eat. They see a trull with nothing else to recommend her but a pair of thighs and choice hunkers, and so smart to void their seed that they marry her at once. They imagine they can live in marvelous contentment with handsome feet and ambrosial buttocks. Most men are accredited fools shortly after they leave the womb.
    Edward Dahlberg (1900–1977)