Probabilistic number theory is a subfield of number theory, which explicitly uses probability to answer questions of number theory. One basic idea underlying it is that different prime numbers are, in some serious sense, like independent random variables. This however is not an idea that has a unique useful formal expression.
The founders of the theory were Paul Erdős, Aurel Wintner and Mark Kac during the 1930s, one of the most intense periods of investigation in analytic number theory. The Erdős–Wintner theorem and the Erdős–Kac theorem on additive functions were foundational results.
Read more about Probabilistic Number Theory: See Also
Famous quotes containing the words number and/or theory:
“In proportion as our inward life fails, we go more constantly and desperately to the post office. You may depend on it, that the poor fellow who walks away with the greatest number of letters, proud of his extensive correspondence, has not heard from himself this long while.”
—Henry David Thoreau (18171862)
“Everything to which we concede existence is a posit from the standpoint of a description of the theory-building process, and simultaneously real from the standpoint of the theory that is being built. Nor let us look down on the standpoint of the theory as make-believe; for we can never do better than occupy the standpoint of some theory or other, the best we can muster at the time.”
—Willard Van Orman Quine (b. 1908)