Primitive Recursive Function - Relationship To Recursive Functions

Relationship To Recursive Functions

The broader class of partial recursive functions is defined by introducing an unbounded search operator. The use of this operator may result in a partial function, that is, a relation with at most one value for each argument, but does not necessarily have any value for any argument (see domain). An equivalent definition states that a partial recursive function is one that can be computed by a Turing machine. A total recursive function is a partial recursive function that is defined for every input.

Every primitive recursive function is total recursive, but not all total recursive functions are primitive recursive. The Ackermann function A(m,n) is a well-known example of a total recursive function that is not primitive recursive. There is a characterization of the primitive recursive functions as a subset of the total recursive functions using the Ackermann function. This characterization states that a function is primitive recursive if and only if there is a natural number m such that the function can be computed by a Turing machine that always halts within A(m,n) or fewer steps, where n is the sum of the arguments of the primitive recursive function.

An important property of the primitive recursive functions is that they are a recursively enumerable subset of the set of all total recursive functions (which is not itself recursively enumerable). This means that there is a single computable function f(e,n) such that:

  • For every primitive recursive function g, there is an e such that g(n) = f(e,n) for all n, and
  • For every e, the function h(n) = f(e,n) is primitive recursive.

However, the primitive recursive functions are not the largest recursively enumerable set of total computable functions.

Read more about this topic:  Primitive Recursive Function

Famous quotes containing the words relationship to, relationship and/or functions:

    Sometimes in our relationship to another human being the proper balance of friendship is restored when we put a few grains of impropriety onto our own side of the scale.
    Friedrich Nietzsche (1844–1900)

    We think of religion as the symbolic expression of our highest moral ideals; we think of magic as a crude aggregate of superstitions. Religious belief seems to become mere superstitious credulity if we admit any relationship with magic. On the other hand our anthropological and ethnographical material makes it extremely difficult to separate the two fields.
    Ernst Cassirer (1874–1945)

    In today’s world parents find themselves at the mercy of a society which imposes pressures and priorities that allow neither time nor place for meaningful activities and relations between children and adults, which downgrade the role of parents and the functions of parenthood, and which prevent the parent from doing things he wants to do as a guide, friend, and companion to his children.
    Urie Bronfenbrenner (b. 1917)