Primitive Recursive Function

Primitive Recursive Function

The primitive recursive functions are defined using primitive recursion and composition as central operations and are a strict subset of the total µ-recursive functions (µ-recursive functions are also called partial recursive). The term was coined by Rózsa Péter.

In computability theory, primitive recursive functions are a class of functions that form an important building block on the way to a full formalization of computability. These functions are also important in proof theory.

Most of the functions normally studied in number theory are primitive recursive. For example: addition, division, factorial, exponential and the nth prime are all primitive recursive. So are many approximations to real-valued functions. In fact, it is difficult to devise a computable function that is not primitive recursive, although some are known (see the section on Limitations below). The set of primitive recursive functions is known as PR in complexity theory.

Every primitive recursive function is a general recursive function.

Read more about Primitive Recursive Function:  Definition, Examples, Relationship To Recursive Functions, Limitations, Some Common Primitive Recursive Functions, Additional Primitive Recursive Forms, Finitism and Consistency Results

Famous quotes containing the words primitive and/or function:

    Look at this poet William Carlos Williams: he is primitive and native, and his roots are in raw forest and violent places; he is word-sick and place-crazy. He admires strength, but for what? Violence! This is the cult of the frontier mind.
    Edward Dahlberg (1900–1977)

    Every boy was supposed to come into the world equipped with a father whose prime function was to be our father and show us how to be men. He can escape us, but we can never escape him. Present or absent, dead or alive, real or imagined, our father is the main man in our masculinity.
    Frank Pittman (20th century)