Prime Number - Distribution

Distribution

In 1975, number theorist Don Zagier commented that primes both

grow like weeds among the natural numbers, seeming to obey no other law than that of chance exhibit stunning regularity that there are laws governing their behavior, and that they obey these laws with almost military precision.

The distribution of primes in the large, such as the question how many primes are smaller than a given, large threshold, is described by the prime number theorem, but no efficient formula for the n-th prime is known.

There are arbitrarily long sequences of consecutive non-primes, as for every positive integer the consecutive integers from to (inclusive) are all composite (as is divisible by for between and ).

Dirichlet's theorem on arithmetic progressions, in its basic form, asserts that linear polynomials

with coprime integers a and b take infinitely many prime values. Stronger forms of the theorem state that the sum of the reciprocals of these prime values diverges, and that different such polynomials with the same b have approximately the same proportions of primes.

The corresponding question for quadratic polynomials is less well-understood.

Read more about this topic:  Prime Number

Famous quotes containing the word distribution:

    The man who pretends that the distribution of income in this country reflects the distribution of ability or character is an ignoramus. The man who says that it could by any possible political device be made to do so is an unpractical visionary. But the man who says that it ought to do so is something worse than an ignoramous and more disastrous than a visionary: he is, in the profoundest Scriptural sense of the word, a fool.
    George Bernard Shaw (1856–1950)

    In this distribution of functions, the scholar is the delegated intellect. In the right state, he is, Man Thinking. In the degenerate state, when the victim of society, he tends to become a mere thinker, or, still worse, the parrot of other men’s thinking.
    Ralph Waldo Emerson (1803–1882)

    Classical and romantic: private language of a family quarrel, a dead dispute over the distribution of emphasis between man and nature.
    Cyril Connolly (1903–1974)