Work and Potential Energy
The work of a force acting on a moving body yields a difference in potential energy when the integration of the work is path independent. The scalar product of a force F and the velocity v of its point of application defines the power input to a system at an instant of time. Integration of this power over the trajectory of the point of application, C=x(t), defines the work input to the system by the force.
If the work for an applied force is independent of the path, then the work done by the force is evaluated at the start and end of the trajectory of the point of application. This means that there is a function U (x), called a "potential," that can be evaluated at the two points x(t1) and x(t2) to obtain the work over any trajectory between these two points. It is tradition to define this function with a negative sign so that positive work is a reduction in the potential, that is
The function U(x) is called the potential energy associated with the applied force. Examples of forces that have potential energies are gravity and spring forces.
In this case, the partial derivative of work yields
and the force F is said to be "derivable from a potential."
Because the potential U defines a force F at every point x in space, the set of forces is called a force field. The power applied to a body by a force field is obtained from the gradient of the work, or potential, in the direction of the velocity V of the body, that is
Examples of work that can be computed from potential functions are gravity and spring forces.
Read more about this topic: Potential Energy
Famous quotes containing the words work, potential and/or energy:
“They give us a pair of cloth shorts twice a year for all our clothing. When we work in the sugar mills and catch our finger in the millstone, they cut off our hand; when we try to run away, they cut off our leg: both things have happened to me. It is at this price that you eat sugar in Europe.”
—Voltaire [François Marie Arouet] (16941778)
“Not many appreciate the ultimate power and potential usefulness of basic knowledge accumulated by obscure, unseen investigators who, in a lifetime of intensive study, may never see any practical use for their findings but who go on seeking answers to the unknown without thought of financial or practical gain.”
—Eugenie Clark (b. 1922)
“All my energy and attention were devoted to trying to help her solve her problems. Unfortunately I didnt have much success.”
—Arthur Miller (b. 1915)
