Further Properties
If M is an Hermitian positive-semidefinite matrix, one sometimes writes M ≥ 0 and if M is positive-definite one writes M > 0. The notion comes from functional analysis where positive-semidefinite matrices define positive operators.
For arbitrary square matrices M,N we write M ≥ N if M − N ≥ 0; i.e., M − N is positive semi-definite. This defines a partial ordering on the set of all square matrices. One can similarly define a strict partial ordering M > N.
- Every positive definite matrix is invertible and its inverse is also positive definite. If M ≥ N > 0 then N−1 ≥ M−1 > 0.
- If M is positive definite and r > 0 is a real number, then r M is positive definite. If M and N are positive definite, then the sum M + N and the products MNM and NMN are also positive definite. If MN = NM, then MN is also positive definite.
- If M,N ≥ 0, although MN is not necessary positive-semidefinite, the Kronecker product M ⊗ N ≥ 0, the Hadamard product M ○ N ≥ 0 (this result is often called the Schur product theorem)., and the Frobenius product Frobenius product M : N ≥ 0 (Lancaster-Tismenetsky, The Theory of Matrices, p. 218).
- Regarding the Hadamard product of two positive-semidefinite matrices M = (mij) ≥ 0, N ≥ 0, there are two notable inequalities:
- (Oppenheim's inequality)
- A matrix M is positive semi-definite if and only if there is a positive semi-definite matrix B with B2 = M. This matrix B is unique, is called the square root of M, and is denoted with B = M1/2 (the square root B is not to be confused with the matrix L in the Cholesky factorization M = LL*, which is also sometimes called the square root of M). If M > N > 0 then M1/2 > N1/2 > 0.
- If M = (mij) ≥ 0 then the diagonal entries mii are real and non-negative. As a consequence the trace, tr(M) ≥ 0. Furthermore
- and thus
- If is a symmetric matrix of the form, and the strict inequality holds
- Let M > 0 and N Hermitian. If MN + NM ≥ 0 (resp., MN + NM > 0) then N ≥ 0 (resp., N > 0).
- If M > 0 is real, then there is a δ > 0 such that M > δI, where I is the identity matrix.
- The set of positive semidefinite symmetric matrices is convex. That is, if M and N are positive semidefinite, then for any between 0 and 1, is also positive semidefinite. For any vector x:
Read more about this topic: Positive-definite Matrix
Famous quotes containing the word properties:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)