Planar Ternary Ring - Definition

Definition

A planar ternary ring is a structure where is a nonempty set, containing distinct elements called 0 and 1, and satisfies these five axioms:

  1. ;
  2. ;
  3. , there is a unique such that : ;
  4. , there is a unique, such that ; and
  5. , the equations have a unique solution .

When is finite, the third and fifth axioms are equivalent in the presence of the fourth. No other pair (0', 1') in can be found such that still satisfies the first two axioms.

Read more about this topic:  Planar Ternary Ring

Famous quotes containing the word definition:

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)

    Mothers often are too easily intimidated by their children’s negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.
    Elaine Heffner (20th century)

    According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animals—just as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.
    Ana Castillo (b. 1953)