In abstract algebra, a division ring, also called a skew field, is a ring in which division is possible. Specifically, it is a non-trivial ring in which every non-zero element a has a multiplicative inverse, i.e., an element x with a·x = x·a = 1. Stated differently, a ring is a division ring if and only if the group of units is the set of all non-zero elements.
Division rings differ from fields only in that their multiplication is not required to be commutative. However, by Wedderburn's little theorem all finite division rings are commutative and therefore finite fields. Historically, division rings were sometimes referred to as fields, while fields were called “commutative fields”.
Read more about Division Ring: Relation To Fields and Linear Algebra, Examples, Ring Theorems, Related Notions
Famous quotes containing the words division and/or ring:
“God and the Devil are an effort after specialization and the division of labor.”
—Samuel Butler (18351902)
“Full fathom five thy father lies,
Of his bones are coral made;
Those are pearls that were his eyes;
Nothing of him that doth fade,
But doth suffer a sea-change
Into something rich and strange.
Sea-nymphs hourly ring his knell:
Ding-dong.
Hark! Now I hear themding-dong bell.”
—William Shakespeare (15641616)