Division Ring

In abstract algebra, a division ring, also called a skew field, is a ring in which division is possible. Specifically, it is a non-trivial ring in which every non-zero element a has a multiplicative inverse, i.e., an element x with a·x = x·a = 1. Stated differently, a ring is a division ring if and only if the group of units is the set of all non-zero elements.

Division rings differ from fields only in that their multiplication is not required to be commutative. However, by Wedderburn's little theorem all finite division rings are commutative and therefore finite fields. Historically, division rings were sometimes referred to as fields, while fields were called “commutative fields”.

Read more about Division Ring:  Relation To Fields and Linear Algebra, Examples, Ring Theorems, Related Notions

Famous quotes containing the words division and/or ring:

    If the technology cannot shoulder the entire burden of strategic change, it nevertheless can set into motion a series of dynamics that present an important challenge to imperative control and the industrial division of labor. The more blurred the distinction between what workers know and what managers know, the more fragile and pointless any traditional relationships of domination and subordination between them will become.
    Shoshana Zuboff (b. 1951)

    I started out very quiet and I beat Mr. Turgenev. Then I trained hard and I beat Mr. de Maupassant. I’ve fought two draws with Mr. Stendhal, and I think I had an edge in the last one. But nobody’s going to get me in any ring with Mr. Tolstoy unless I’m crazy or I keep getting better.
    Ernest Hemingway (1899–1961)