Parallel Transport On A Vector Bundle
Let M be a smooth manifold. Let E→M be a vector bundle with covariant derivative ∇ and γ: I→M a smooth curve parameterized by an open interval I. A section of along γ is called parallel if
Suppose we are given an element e0 ∈ EP at P = γ(0) ∈ M, rather than a section. The parallel transport of e0 along γ is the extension of e0 to a parallel section X on γ. More precisely, X is the unique section of E along γ such that
Note that in any given coordinate patch, (1) defines an ordinary differential equation, with the initial condition given by (2). Thus the Picard–Lindelöf theorem guarantees the existence and uniqueness of the solution.
Thus the connection ∇ defines a way of moving elements of the fibers along a curve, and this provides linear isomorphisms between the fibers at points along the curve:
from the vector space lying over γ(s) to that over γ(t). This isomorphism is known as the parallel transport map associated to the curve. The isomorphisms between fibers obtained in this way will in general depend on the choice of the curve: if they do not then parallel transport along every curve can be used to define parallel sections of E over all of M. This is only possible if the curvature of ∇ is zero.
In particular, parallel transport around a closed curve starting at a point x defines an automorphism of the tangent space at x which is not necessarily trivial. The parallel transport automorphisms defined by all closed curves based at x form a transformation group called the holonomy group of ∇ at x. There is a close relation between this group and the value of the curvature of ∇ at x; this is the content of the Ambrose-Singer holonomy theorem.
Read more about this topic: Parallel Transport
Famous quotes containing the words parallel, transport and/or bundle:
“If from the earth we came, it was an earth
That bore us as a part of all the things
It breeds and that was lewder than it is.
Our nature is her nature. Hence it comes,
Since by our nature we grow old, earth grows
The same. We parallel the mothers death.”
—Wallace Stevens (18791955)
“One may disavow and disclaim vices that surprise us, and whereto our passions transport us; but those which by long habits are rooted in a strong and ... powerful will are not subject to contradiction. Repentance is but a denying of our will, and an opposition of our fantasies.”
—Michel de Montaigne (15331592)
“In the quilts I had found good objectshospitable, warm, with soft edges yet resistant, with boundaries yet suggesting a continuous safe expanse, a field that could be bundled, a bundle that could be unfurled, portable equipment, light, washable, long-lasting, colorful, versatile, functional and ornamental, private and universal, mine and thine.”
—Radka Donnell-Vogt, U.S. quiltmaker. As quoted in Lives and Works, by Lynn F. Miller and Sally S. Swenson (1981)