Parallel Transport - Parallel Transport in Riemannian Geometry

Parallel Transport in Riemannian Geometry

In (pseudo) Riemannian geometry, a metric connection is any connection whose parallel transport mappings preserve the metric tensor. Thus a metric connection is any connection Γ such that, for any two vectors X, Y ∈ Tγ(s)

Taking the derivative at t=0, the associated differential operator ∇ must satisfy a product rule with respect to the metric:

Read more about this topic:  Parallel Transport

Famous quotes containing the words parallel, transport and/or geometry:

    There isn’t a Parallel of Latitude but thinks it would have been the Equator if it had had its rights.
    Mark Twain [Samuel Langhorne Clemens] (1835–1910)

    One may disavow and disclaim vices that surprise us, and whereto our passions transport us; but those which by long habits are rooted in a strong and ... powerful will are not subject to contradiction. Repentance is but a denying of our will, and an opposition of our fantasies.
    Michel de Montaigne (1533–1592)

    I am present at the sowing of the seed of the world. With a geometry of sunbeams, the soul lays the foundations of nature.
    Ralph Waldo Emerson (1803–1882)