Orthonormal Basis - Examples

Examples

  • The set of vectors {e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)} (the standard basis) forms an orthonormal basis of R3.
Proof: A straightforward computation shows that the inner products of these vectors equals zero, <e1, e2> = <e1, e3> = <e2, e3> = 0 and that each of their magnitudes equals one, ||e1|| = ||e2|| = ||e3|| = 1. This means {e1, e2, e3} is an orthonormal set. All vectors (x, y, z) in R3 can be expressed as a sum of the basis vectors scaled
so {e1,e2,e3} spans R3 and hence must be a basis. It may also be shown that the standard basis rotated about an axis through the origin or reflected in a plane through the origin forms an orthonormal basis of R3.
  • The set {fn : nZ} with fn(x) = exp(2πinx) forms an orthonormal basis of the space of functions with finite Lebesgue integrals, L2, with respect to the 2 norm. This is fundamental to the study of Fourier series.
  • The set {eb : bB} with eb(c) = 1 if b = c and 0 otherwise forms an orthonormal basis of 2(B).
  • Eigenfunctions of a Sturm–Liouville eigenproblem.
  • An orthogonal matrix is a matrix whose column vectors form an orthonormal set.

Read more about this topic:  Orthonormal Basis

Famous quotes containing the word examples:

    There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring ‘em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.
    Bernard Mandeville (1670–1733)

    In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.
    Michel de Montaigne (1533–1592)

    It is hardly to be believed how spiritual reflections when mixed with a little physics can hold people’s attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.
    —G.C. (Georg Christoph)