Integral Transform

In mathematics, an integral transform is any transform T of the following form:

The input of this transform is a function f, and the output is another function Tf. An integral transform is a particular kind of mathematical operator.

There are numerous useful integral transforms. Each is specified by a choice of the function K of two variables, the kernel function or nucleus of the transform.

Some kernels have an associated inverse kernel K−1(u, t) which (roughly speaking) yields an inverse transform:

A symmetric kernel is one that is unchanged when the two variables are permuted.

Read more about Integral Transform:  Motivation, History, Importance of Orthogonality, Usage Example, Table of Transforms, Different Domains, General Theory

Famous quotes containing the words integral and/or transform:

    An island always pleases my imagination, even the smallest, as a small continent and integral portion of the globe. I have a fancy for building my hut on one. Even a bare, grassy isle, which I can see entirely over at a glance, has some undefined and mysterious charm for me.
    Henry David Thoreau (1817–1862)

    God defend me from that Welsh fairy,
    Lest he transform me to a piece of cheese!
    William Shakespeare (1564–1616)