In mathematics, an integral transform is any transform T of the following form:
The input of this transform is a function f, and the output is another function Tf. An integral transform is a particular kind of mathematical operator.
There are numerous useful integral transforms. Each is specified by a choice of the function K of two variables, the kernel function or nucleus of the transform.
Some kernels have an associated inverse kernel K−1(u, t) which (roughly speaking) yields an inverse transform:
A symmetric kernel is one that is unchanged when the two variables are permuted.
Read more about Integral Transform: Motivation, History, Importance of Orthogonality, Usage Example, Table of Transforms, Different Domains, General Theory
Famous quotes containing the words integral and/or transform:
“Painting myself for others, I have painted my inward self with colors clearer than my original ones. I have no more made my book than my book has made mea book consubstantial with its author, concerned with my own self, an integral part of my life; not concerned with some third-hand, extraneous purpose, like all other books.”
—Michel de Montaigne (15331592)
“Bees plunder the flowers here and there, but afterward they make of them honey, which is all theirs; it is no longer thyme or marjoram. Even so with the pieces borrowed from others; one will transform and blend them to make a work that is all ones own, that is, ones judgement. Education, work, and study aim only at forming this.”
—Michel de Montaigne (15331592)