Ordered Field - Properties of Ordered Fields

Properties of Ordered Fields

  • If x < y and y < z, then x < z. (transitivity)
  • If x < y and z > 0, then xz < yz.
  • If x < y and x,y > 0, then 1/y < 1/x

For every a, b, c, d in F:

  • Either −a ≤ 0 ≤ a or a ≤ 0 ≤ −a.
  • We are allowed to "add inequalities": If ab and cd, then a + cb + d
  • We are allowed to "multiply inequalities with positive elements": If ab and 0 ≤ c, then acbc.
  • 1 is positive. (Proof: either 1 is positive or −1 is positive. If −1 is positive, then (−1)(−1) = 1 is positive, which is a contradiction)
  • An ordered field has characteristic 0. (Since 1 > 0, then 1 + 1 > 0, and 1 + 1 + 1 > 0, etc. If the field had characteristic p > 0, then −1 would be the sum of p − 1 ones, but −1 is not positive). In particular, finite fields cannot be ordered.
  • Squares are non-negative. 0 ≤ a² for all a in F. (Follows by a similar argument to 1 > 0)

Every subfield of an ordered field is also an ordered field (inheriting the induced ordering). The smallest subfield is isomorphic to the rationals (as for any other field of characteristic 0), and the order on this rational subfield is the same as the order of the rationals themselves. If every element of an ordered field lies between two elements of its rational subfield, then the field is said to be Archimedean. Otherwise, such field is a non-Archimedean ordered field and contains infinitesimals. For example, the real numbers form an Archimedean field, but every hyperreal field is non-Archimedean.

An ordered field K is the real number field if it satisfies the axiom of Archimedes and every Cauchy sequence of K converges within K.

Read more about this topic:  Ordered Field

Famous quotes containing the words properties of, properties, ordered and/or fields:

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)

    Then he rang the bell and ordered a ham sandwich. When the maid placed the plate on the table, he deliberately looked away but as soon as the door had shut, he grabbed the sandwich with both hands, immediately soiled his fingers and chin with the hanging margin of fat and, grunting greedily, began to much.
    Vladimir Nabokov (1899–1977)

    Luxurious Man, to bring his Vice in use,
    Did after him the World seduce:
    And from the fields the Flow’rs and Plants allure,
    Andrew Marvell (1621–1678)