If Y is a subset of X, then Y inherits a total order from X. Y therefore has an order topology, the induced order topology. As a subset of X, Y also has a subspace topology. The subspace topology is always at least as fine as the induced order topology, but they are not in general the same.
For example, consider the subset Y = {–1} ∪ {1/n}n∈N in the rationals. Under the subspace topology, the singleton set {–1} is open in Y, but under the induced order topology, any open set containing –1 must contain all but finitely many members of the space.
Read more about this topic: Order Topology
Famous quotes containing the words induced and/or order:
“It is a misfortune that necessity has induced men to accord greater license to this formidable engine, in order to obtain liberty, than can be borne with less important objects in view; for the press, like fire, is an excellent servant, but a terrible master.”
—James Fenimore Cooper (17891851)
“The theater, which is in no thing, but makes use of everythinggestures, sounds, words, screams, light, darknessrediscovers itself at precisely the point where the mind requires a language to express its manifestations.... To break through language in order to touch life is to create or recreate the theatre.”
—Antonin Artaud (18961948)