Relations Between The Topologies
The continuous linear functionals on B(H) for the weak, strong, and strong* (operator) topologies are the same, and are the finite linear combinations of the linear functionals (xh1, h2) for h1, h2 in H. The continuous linear functionals on B(H) for the ultraweak, ultrastrong, ultrastrong* and Arens-Mackey topologies are the same, and are the elements of the predual B(H)*.
By definition, the continuous linear functionals in the norm topology are the same as those in the weak Banach space topology. This dual is a rather large space with many pathological elements.
On norm bounded sets of B(H), the weak (operator) and ultraweak topologies coincide. This can be seen via, for instance, the Banach–Alaoglu theorem. For essentially the same reason, the ultrastrong topology is the same as the strong topology on any (norm) bounded subset of B(H). Same is true for the Arens-Mackey topology, the ultrastrong*, and the strong* topology.
In locally convex spaces, closure of convex sets can be characterized by the continuous linear functionals. Therefore, for a convex subset K of B(H), the conditions that K be closed in the ultrastrong*, ultrastrong, and ultraweak topologies are all equivalent and are also equivalent to the conditions that for all r > 0, K has closed intersection with the closed ball of radius r in the strong*, strong, or weak (operator) topologies.
The norm topology is metrizable and the others are not; in fact they fail to be first-countable. However, when H is separable, all the topologies above are metrizable when restricted to the unit ball (or to any norm-bounded subset).
Read more about this topic: Operator Topologies
Famous quotes containing the words relations between and/or relations:
“All social rules and all relations between individuals are eroded by a cash economy, avarice drags Pluto himself out of the bowels of the earth.”
—Karl Marx (18181883)
“In the mythic schema of all relations between men and women, man proposes, and woman is disposed of.”
—Angela Carter (19401992)