General
In quantum field theory, the operator product expansion (OPE) is a convergent expansion of the product of two fields at different points as a sum (possibly infinite) of local fields.
More precisely, if x and y are two different points, and A and B are operator-valued fields, then there is an open neighborhood of y, O such that for all x in O/{y}
where the sum is over finitely or countably many terms, Ci are operator-valued fields, ci are analytic functions over O/{y} and the sum is convergent in the operator topology within O/{y}.
OPEs are most often used in conformal field theory.
The notation is often used to denote that the difference G(x,y)-F(x,y) remains analytic at the points x=y. This is an equivalence relation.
Read more about this topic: Operator Product Expansion
Famous quotes containing the word general:
“Though of erect nature, man is far above the plants. For mans superior part, his head, is turned toward the superior part of the world, and his inferior part is turned toward the inferior world; and therefore he is perfectly disposed as to the general situation of his body. Plants have the superior part turned towards the lower world, since their roots correspond to the mouth, and their inferior parts towards the upper world.”
—Thomas Aquinas (c. 12251274)
“He who never sacrificed a present to a future good or a personal to a general one can speak of happiness only as the blind do of colors.”
—Olympia Brown (18351900)
“To have in general but little feeling, seems to be the only security against feeling too much on any particular occasion.”
—George Eliot [Mary Ann (or Marian)