Operator Product Expansion - General

General

In quantum field theory, the operator product expansion (OPE) is a convergent expansion of the product of two fields at different points as a sum (possibly infinite) of local fields.

More precisely, if x and y are two different points, and A and B are operator-valued fields, then there is an open neighborhood of y, O such that for all x in O/{y}

where the sum is over finitely or countably many terms, Ci are operator-valued fields, ci are analytic functions over O/{y} and the sum is convergent in the operator topology within O/{y}.

OPEs are most often used in conformal field theory.

The notation is often used to denote that the difference G(x,y)-F(x,y) remains analytic at the points x=y. This is an equivalence relation.

Read more about this topic:  Operator Product Expansion

Famous quotes containing the word general:

    Then comes my fit again. I had else been perfect,
    Whole as the marble, founded as the rock,
    As broad and general as the casing air.
    But now I am cabined, cribbed, confined, bound in
    To saucy doubts and fears.
    William Shakespeare (1564–1616)

    ‘A thing is called by a certain name because it instantiates a certain universal’ is obviously circular when particularized, but it looks imposing when left in this general form. And it looks imposing in this general form largely because of the inveterate philosophical habit of treating the shadows cast by words and sentences as if they were separately identifiable. Universals, like facts and propositions, are such shadows.
    David Pears (b. 1921)

    In general I do not draw well with literary men—not that I dislike them but I never know what to say to them after I have praised their last publication.
    George Gordon Noel Byron (1788–1824)