Research Directions
The United States completed six high-altitude nuclear tests in 1958, but the high-altitude tests of that year raised a number of questions. According to U.S. Government Report ADA955694 on the first successful test of the Fishbowl series, "Previous high-altitude nuclear tests: TEAK, ORANGE, and YUCCA, plus the three ARGUS shots were poorly instrumented and hastily executed. Despite thorough studies of the meager data, present models of these bursts are sketchy and tentative. These models are too uncertain to permit extrapolation to other altitudes and yields with any confidence. Thus there is a strong need, not only for better instrumentation, but for further tests covering a range of altitudes and yields."
There were three phenomena in particular that required further investigation:
1. The electromagnetic pulse generated by a high-altitude nuclear explosion appeared to have very significant differences from the electromagnetic pulse generated by nuclear explosions closer to the surface.
2. The auroras associated with high-altitude nuclear explosions, especially the auroras that appeared almost instantaneously far away from the explosion in the opposite hemisphere, were not clearly understood. The nature of the possible radiation belts that were initially generated along the magnetic field lines connecting the areas of the auroral displays were also poorly understood.
3. Areas of blackout of radio communication needed to be understood in much more detail since that information would be critical for military operations during periods of possible nuclear explosions.
The Fishbowl tests were monitored by a large number of surface and aircraft-based stations in the wide area around the planned detonations and also in the region in the southern hemisphere in the Samoan Islands region, which was known in these tests as the southern conjugate region. Johnston Island is in the northern hemisphere, as were all of the planned Operation Fishbowl nuclear detonation locations. It was known from previous high altitude tests, as well as from theoretical work done in the late 1950s, that high-altitude nuclear tests produce a number of unique geophysical phenomena at the opposite end of the magnetic field line of the Earth's magnetic field.
According to the standard reference book on nuclear weapon effects by the United States Department of Defense, "For the high-altitude tests conducted in 1958 and 1962 in the vicinity of Johnston Island, the charged particles entered the atmosphere in the northern hemisphere between Johnston Island and the main Hawaiian Islands, whereas the conjugate region was in the vicinity of the Samoan, Fiji, and Tonga Islands. It is in these areas that auroras were actually observed, in addition to those in the areas of the nuclear explosions."
Beta particles are charged particles (usually with a negative electrical charge) that are released from nuclear explosions. These particles travel in a spiral along the magnetic field lines in the Earth's magnetic field. The nuclear explosions also release heavier debris ions, which also carry an electrical charge, and which also travel in a spiral along the Earth's magnetic field lines.
The Earth's magnetic field lines arc high above the Earth until they reach the magnetic conjugate area in the opposite hemisphere.
According to the DOD nuclear weapon effects reference, "Because the beta particles have high velocities, the beta auroras in the remote (southern) hemisphere appeared within a fraction of a second of those in the hemisphere where the burst had occurred. The debris ions, however, travel more slowly and so the debris aurora in the remote hemisphere, if it is formed, appears at a somewhat later time. The beta auroras are generally most intense at an altitude of 30 to 60 miles, whereas the intensity of the debris auroras is greatest in the 60 to 125 miles range. Remote conjugate beta auroras can occur if the detonation is above 25 miles, whereas debris auroras appear only if the detonation altitude is in excess of some 200 miles."
Some of the charged particles traveling along the Earth's magnetic field lines cause auroras and other geophysical phenomena in the conjugate areas. Other charged particles are reflected back along the magnetic field lines, where they can persist for long periods of time (up to several months or longer), forming artificial radiation belts.
According to the Operation Fishbowl planning document of November 1961, "Since much valuable data can be obtained from time and spectrum resolved photography, this dictates that the test be performed at nighttime when auroral photographic conditions are best." As with all U.S. Pacific high-altitude nuclear tests, all of the Operation Fishbowl tests were completed at night. This is in contrast to the Soviet high-altitude tests of the K Project, which were done over the populated land region of central Kazakhstan, and therefore had to be done during the daytime to avoid eyeburn damage to the population from the very bright flash of high-altitude nuclear explosions (as discussed in the introduction to this article).
Read more about this topic: Operation Fishbowl
Famous quotes containing the words research and/or directions:
“It is a good morning exercise for a research scientist to discard a pet hypothesis every day before breakfast. It keeps him young.”
—Konrad Lorenz (19031989)
“My friend devotes himself to his life, whenever he can find the spare time. His motto is: Dont just sit there: live! So hes too busy to stand, to walk, to do anything, except to live. He even refused to kiss a girl, when invited, on the grounds that it was time again to be living. Schedules are sacred to him.”
—Marvin Cohen, U.S. author and humorist. The Self-Devoted Friend, New Directions (1967)