Group Action
Group actions of the symmetry group that can be considered in this connection are:
- on R
- on the set of real functions of a real variable (each representing a pattern)
This section illustrates group action concepts for these cases.
The action of G on X is called
- transitive if for any two x, y in X there exists a g in G such that g · x = y; for neither of the two group actions this is the case for any discrete symmetry group
- faithful (or effective) if for any two different g, h in G there exists an x in X such thatg · x ≠ h · x; for both group actions this is the case for any discrete symmetry group (because, except for the identity, symmetry groups do not contain elements that “do nothing”)
- free if for any two different g, h in G and all x in X we have g · x ≠ h · x; this is the case if there are no reflections
- regular (or simply transitive) if it is both transitive and free; this is equivalent to saying that for any twox, y in X there exists precisely one g in G such that g · x = y.
Read more about this topic: One-dimensional Symmetry Group
Famous quotes containing the words group and/or action:
“Instead of seeing society as a collection of clearly defined interest groups, society must be reconceptualized as a complex network of groups of interacting individuals whose membership and communication patterns are seldom confined to one such group alone.”
—Diana Crane (b. 1933)
“The grand principles of virtue and honor, however they may be distorted by arbitrary codes, are the same the world over: and where these principles are concerned, the right or wrong of any action appears the same to the uncultivated as to the enlightened mind.”
—Herman Melville (18191891)