Oberth Effect

In astronautics, the Oberth effect is where the use of a rocket engine when travelling at high speed generates much more useful energy than one at low speed. Oberth effect occurs because the propellant has more usable energy (due to its kinetic energy on top of its chemical potential energy) and it turns out that the vehicle is able to employ this kinetic energy to generate more mechanical power. It is named after Hermann Oberth, the Austro-Hungarian-born, German physicist and a founder of modern rocketry, who first described the effect.

In interplanetary spaceflight the Oberth effect is used in a powered flyby or Oberth maneuver where the application of an impulse, typically from the use of a rocket engine, close to a gravitational body (where the gravity potential is low, and the speed is high) can give much more change in kinetic energy and final speed (i.e. higher specific energy) than the same impulse applied farther from the body for the same initial orbit. For the Oberth effect to be most effective, the vehicle must be able to generate as much impulse as possible at the lowest possible altitude; thus the Oberth effect is often far less useful for low-thrust reaction engines such as ion drives, which have a low propellant flow rate.

The Oberth effect also can be used to understand the behaviour of multi-stage rockets; the upper stage can generate much more usable kinetic energy than might be expected from simply considering the chemical energy of the propellants it carries.

Historically, a lack of understanding of this effect led early investigators to conclude that interplanetary travel would require completely impractical amounts of propellant, as without it, enormous amounts of energy would be needed.

Read more about Oberth Effect:  Description, Parabolic Example, Detailed Proof, See Also

Famous quotes containing the word effect:

    But that intimacy of mutual embarrassment, in which each feels that the other is feeling something, having once existed, its effect is not to be done away with.
    George Eliot [Mary Ann (or Marian)