Parabolic Example
If the vehicle travels at velocity v at the start of a burn that changes the velocity by Δv, then the change in specific orbital energy (SOE) is
Once the space craft is far from the planet again, the SOE is entirely kinetic, since gravitational potential energy tends to zero. Therefore, the larger the v at the time of the burn, the greater the final kinetic energy, and the higher the final velocity.
The effect becomes more pronounced the closer to the central body, or more generally, the deeper in the gravitational field potential the burn occurs, since the velocity is higher there.
So if a spacecraft is on a parabolic flyby of Jupiter with a periapsis velocity of 50 km/s, and it performs a 5 km/s burn, it turns out that the final velocity change at great distance is 22.9 km/s; giving a multiplication of the burn by 4.6 times.
Read more about this topic: Oberth Effect